
Master-Thesis in Computer Science and Media
Fachbereich Druck und Medien der Hochschule der Medien, Stuttgart

Architecture and Prototype

of a Game-Engine

Architektur und Prototyp

einer Spiele-Engine

Andreas Stiegler

Examiner: Prof. Walter Kriha
Computer Science and Media
Stuttgart Media University

Prof. Dr. Jens-Uwe Hahn
Computer Science and Media
Stuttgart Media University

Stuttgart, November 16th, 2010

Stuttgart Media University

Hochschule der Medien, Stuttgart

"Imagination is more important than knowledge.

 For knowledge is limited [...]."

"Phantasie ist wichtiger als Wissen,

 denn Wissen ist begrenzt [...]."

- Albert Einstein, 1929

5

1. Abstract
This thesis describes the modules of a modern, commercial-scale game engine. It also gives an

overview of potential techniques and implementations with examples of real commercial titles. The

term "game engine" is defined, and the development of a game engine is sorted in the development

process of a whole game project. The requirements of a game engine are identified in respect to the

target genre or meta-genre and different models for managing a game engine are shown. Each

subsector of a game engine, excluding rendering and AI, is then closely analyzed to identify how

entities can be mapped on the game engine runtime. In contrast to many other documents, this

thesis will not view a game engine from a "graphics" point of view, starting development at the

graphics engine. Instead, this paper will lead to actually implementing an in-game universe, taking

care of causality, time, and information in the process and then transferring the archived knowledge

into an implementation.

After an overview of the functionalities of a commercial-scale game mechanics oriented game

engine are established, this thesis will introduce an exemplary engine: the Telesto Engine, designed

for real-time-Strategy Games and Massive Multiplayer Online Games (MMOGs). An overview of

Telesto is given, forming a link to the generic engine descriptions. Likewise, the most important

implementations of Telesto are uncovered, including the actual algorithms used for the time and

causality handling, the scripting language, the resource manager, the physics and many smaller

modules, such as the GUI or a generic extractor pattern to connect external modules like a graphics

renderer.

1.1. About this document
This document is split into two parts. The first part establishes a common vocabulary for a game

engine context, as no universal vocabulary exists yet. It also serves to give an overview of different

approaches for the many game development problems, in order to understand why a certain

solution has been chosen. The second part will analyze Telesto, a prototype of a game engine

architecture. During this part of this document, many links will be formed to the first generic engine

introduction, in order to understand the context of the decisions.

As a game engine consists of a wide variety of modules, which are largely independent in their

challenges, the evaluation was moved from a general chapter into the specific subchapters. The

physics chapter, for example, will include benchmark tests of different collision algorithms. The same

happened to potential improvements and planned features. In order to preserve the context, they

are described in the specific chapter, rather than a separate listing.

6

7

2. Contents
1. Abstract ... 5

1.1. About this document .. 5

3. Games ... 13

3.1. Character-based Games .. 14

3.2. Omnipresence-based Games .. 16

3.3. Hybrid Games .. 17

4. Architectural Principles ... 19

4.1. Game Development .. 20

4.1.1. Gameplay .. 21

4.1.2. Content ... 21

4.1.3. Community .. 22

4.1.4. Deployment ... 22

4.1.5. Porting ... 22

4.1.6. Tooling ... 22

4.2. Game Engine Overview ... 23

4.2.1. Game Mechanics ... 24

4.2.2. Physics ... 25

4.2.3. Networking .. 26

4.2.4. Artificial Intelligence ... 26

4.2.5. Graphics .. 27

4.2.6. Interface .. 27

4.2.7. Sound .. 28

4.3. The in-game universe .. 28

4.3.1. Time .. 28

4.3.2. Cycles .. 29

4.3.3. Constant Cycle Length ... 29

4.3.4. Variable Cycle Length .. 30

4.3.5. Prediction and Continuous Cycles ... 31

4.4. Parallelization .. 32

4.5. Causality .. 32

5. Multiplayer .. 35

5.1. Synchrony via Domains ... 36

5.2. Synchrony via Lambdas ... 37

8

5.3. Synchrony via Reconstruction ... 37

6. Game Objects .. 39

6.1. Simple Information Models .. 39

6.2. Actor Models and Active Objects .. 40

6.3. Modular Shared Memory Models ... 42

6.4. Behaviors ... 43

6.5. Game Object Containers ... 44

7. Telesto ... 49

7.1. Motivation ... 49

7.2. Goals ... 49

7.2.1. No external dependencies .. 50

7.2.2. Full .NET Project .. 51

7.2.3. Maintainability and flexibility ... 51

7.2.4. Synchrony via reconstruction ... 52

7.2.5. Prototype .. 53

7.3. Exclusions and options for the future ... 53

8. The Telesto Architecture ... 55

8.1. Visual Basic .. 55

9. Core ... 57

9.1. Time and cycles ... 57

9.1.1. Brush Cycles .. 59

9.2. Lisp and LScript ... 60

9.2.1. Avoiding Lisp call-chains ... 61

9.2.2. Caching .. 63

9.2.3. Variable Indexing .. 68

9.3. Resource Manager .. 69

9.4. Extractors .. 73

9.5. Input handling ... 73

9.6. Containers ... 75

10. Foundation .. 77

10.1. Entities .. 77

10.1.1. Multiplayer synchrony-via-reconstruction ... 80

10.2. Physics ... 82

10.2.1. Dynamics ... 82

9

10.2.2. Collision Geometry .. 90

10.2.3. Collision Detection .. 92

10.2.4. Collision Analysis ... 96

10.2.5. Collision Response .. 96

10.3. GUI .. 101

11. Externals .. 103

12. Thread Map ... 105

13. Acknowledgments ... 109

14. Integrity Statement ... 111

15. Appendix: Benchmark Systems ... 113

16. List of Figures .. 114

17. References .. 115

10

11

Part 1

Theory of Game Development

12

13

3. Games
Interactive entertainment has become a very powerful economic sector, en par with old-school

juggernauts like Hollywood and the music industry (1). Due to its extremely widespread audience,

there are countless types or even meta types of games. This ranges from small web-games

embedded in advertisements on your favorite webpage, to giant mass phenomena like World of

Warcraft (2), which has a serious influence on real-world society (3). It's not up to me to judge

whether this development is beneficial or if the "entertainmentisation" of our society is a problem

we should think about. No matter how you put it, the gaming industry has become an important

factor in our daily lives and there is a lot of development and research involved in creating games.

This thesis will try to cover the most important aspects of a certain type of game development -

namely the default desktop-PC computer game – as well as feature an exemplary architecture and

give some implementation details.

First, however, it's important to clarify what to talk about. There are countless categorization

methods for games, aiming at different aspects. Everybody should have read about genres like

Strategy Games, First Person Shooters or Arcade, but it is difficult to find a global nomenclature

when talking about the full spectrum of games, including merchandise games, console titles and the

characteristics of the western and eastern gaming market. For the sake of this document, we will

concentrate on commercial PC titles. Many console games released in the past years would fit this

classification, too. In fact, quite a good percentage of games are developed for multiple platforms,

including both PC and console versions - and in some cases even smartphones. However, the

hardware characteristics of a console are different from a commodity PC and therefore require

different development approaches. We will discuss this later on, once we take a deeper look at the

mechanics of a game engine. Think about memory management, graphics API or multithread

capability for example.

Just looking at the variety of PC games leaves us with a large collection of different genres and

requirements. Even without any further knowledge, one should easily see that a first person shooter

has different requirements compared to a Strategy Game. Just take graphics, for example. The game

engine of a First Person Shooter - presenting the game world from the player’s perspective - has a

much harder time simulating a realistic environment than a Strategy Game, where you hover above

the game world and issue commands. This is a perspective most of us do not encounter in daily life,

which leads to a greater acceptance of abstract graphics information while still maintaining the

illusion of a realistic world.

Nonetheless, many genres share requirements. For example, the basic role-playing game follows a

single hero character or a group of characters and features similar requirements compared to First

Person Shooter. Equivalent similarities can be found for other genres, such as Strategy Games and

Economic Simulations. The genre classification was introduced from a consumer’s perspective and

describes the actual game content or certain gameplay characteristics. In order to compare the

engine technology of games, this paper will use different nomenclature, dividing the majority of

games into two meta genres: character-based and omnipresence-based games.

In taking this route, we only look at a subset of games, the so called real-time games. What the term

"real-time" implies exactly will be discussed in a later paragraph. For now the difference can easily

be made visible if turn-based games like chess or Civilization (4) are compared to real-time games

14

like StarCraft (5). Each of these three is a Strategy Game, but chess and Civilization (4) do not

simulate a "constantly running universe". Although most of the technologies discussed in this

document can be used for turn-based or other non-real-time games, there might be better solutions,

as many problems of simulating a real-time-universe do not arise if the continuous constraint is not

required by the gameplay. But I'm getting ahead of myself. Today, the gaming market is strongly

dominated by real-time games and they are definitely the most difficult task to look at.

Now that the classification "real-time" is fixed, we still have to think about the little world, "game". A

more scientific description for the games we are looking at would probably be a "soft real-time

interactive agent-based simulation". Let's break this phrase down to understand each part. We

already know what real-time is in the context of a computer game. In contrast to hard real-time, soft

real-time means that the simulation accepts delays. There are certain limits in every game, for

example, 60 frames should be rendered per second. If the system is slow, this might drop to a lower

frame rate. If this happens, the simulation does not die. An example for a hard real-time system

could be an artificial heart pacemaker, which does not tolerate delays at all.

A game is also an interactive simulation. It is not reality. It's a simulation of reality, using abstraction

and simplification to achieve a mathematical model which may be processed by a computer. This is

also true if the "image" for the simulation were a fictional universe and not reality. It still leads to an

abstracted and simplified model. As a game involves human interaction, it also has to be interactive.

As games try to represent entities of some kind, they are agent-based, with the agent modeling the

universe’s entities. There are generally multiple agents per entity, but we will look into entities -

called “Game Objects” in the context of game development - later on.

3.1. Character-based Games
Many games follow a player’s character of some kind, be it a sword-wielding hero, a racing car or a

spaceship with its crew, which the player controls more or less directly. The most important part is

that a player interacts with the world by controlling his or her character. Keeping this pattern in

mind, we can identify certain key characteristics of a character-based game engine.

A character-based game engine can utilize what is often called "spheres of influence". A sphere of

influence is the maximum region a player’s character can cause events in. As a character is a spatial

entity which has a physical representation in the in-game universe, it is bound to the in-game

causality paradigms. The sphere of influence of a player’s character in a First Person Shooter could,

for instance, be its maximum viewable sphere, defined by the maximum viewable distance, as a

player can't shoot things he or she cannot see. Of course, if the bullets fly long enough, it’s possible,

but most games delete bullets once they exit the maximum viewable distance or after a certain

period of time, given that they are simulated as projectiles and not just basic ray casts. The ability to

expect a sphere of influence, no matter how exactly it will be calculated or handled, allows a lot of

architectural tuning to increase performance in the field of simulated causality and multiplayer

synchrony. Spheres of influence are not always visible directly in the code, but they are the key

concept that allow causality-tuning for character-based games. Causality will be covered more in

depth in later chapters.

Another important point about character-based games is the addiction to graphics - or better said

the simulation of a believable environment. We encounter daily life as a character-based game, too.

15

Gameplay might not be the best, but the graphics and physics are pretty neat. Therefore our brain is

well trained to perceive and analyze an environment from our own perspective. We are also trained

to find unexpected or strange (in the sense of uncommon) things within a first-person environment,

since every strange noise or unusual leaf movement could have been a saber-toothed tiger on the

prowl. Therefore we are very capable of finding clipping errors, UV-seam mismatches or stuttering

animations. If the goal of an engine is to simulate a photorealistic environment, this becomes a

severe issue. Many modern games break with photorealism, by utilizing comic-style graphics for

example. This bypasses our brain’s link to real-life and stops it from searching for saber-toothed cats

- and from finding rendering flaws in the process. This is another good example for the ongoing

content versus technology problem that one can find in almost every aspect of game development.

The following list contains a few typical character-based genres with examples. These games were

also useful for my studies while working on the engine. These games were chosen because they are

either popular representatives of their genres, their source code or other useful information is

published, or because I simply enjoy playing them. There is no reason why game-development

shouldn't be fun. Some notes of why I chose the respective title are given next to name. There are a

lot of other potential games out there and this list could easily be doubled or tippled in size, yet it is

best to focus on a limited collection of examples. Starting to work on game engines could begin with

playing a few of these games and taking a closer look at what's actually happening behind the

scenes. One can notice a lot about the actual engine without even reading a single line of source

code.

First Person Shooters Half-Life 2 (6)
Source Engine, Game-Mechanics source code published, powerful SDK

Crysis (7)

CryEngine 2, background information, superb renderer, editor

Counter-Strike: Source (8)

Source Engine, contacts, level design, balancing

Killing Floor (9)

Unreal Engine, RPG-Shooter mix, hell of a lot of fun to play

Roll Play Games,
Adventures

Neverwinter Nights 2 (10)
Unique engine, complex game mechanics, SDK

Racing FlatOut 2 (11)
Unknown engine, good physics and damage model, multi-platform

Massive Multiplayer Online Games World of Warcraft (2)
"Warcraft Engine", MMOG server model, Content vs. Technology

Aion (12)

CryEngine, large populations management, using a shooter engine for an
MMOG

Guild Wars (13)

Unknown engine, "faking" a massive universe, Content vs. Technology

16

Hack'n'Slay,
Action Adventures

Sacred 2: Fallen Angel (14)
Unnamed engine, integration of PhysX (15), Community Management,
Interviews

Jump'n'Run New Super Mario Bros. Wii (16)
Unnamed engine, console title, one-console-multiplayer, Wii-Remote
experiments

Flight Simulators IL-2 Sturmovik (17)
Unique Engine, AI, atmospheric simulation

Sports (I did not look at this genre, but most games would fit)

3.2. Omnipresence-based Games
As the name already indicates, an omnipresence-based game does not directly tie a player to a

certain game entity. Instead, the player exists as an abstract not-spatial concept and interacts with

the game world by influencing the in-Game Objects via certain tools. A popular example for this

approach would be Strategy Games, where the player moves across the map as some kind of god-

like entity and issues commands to his or her army. Interaction with the in-game universe takes

place as the armies are on the move and execute their given orders.

Due to its non-spatial characteristic, an omnipresence-oriented game engine can't draw spheres of

influence around a player. In most cases, a player could interact with any of the present objects in

the complete in-game universe. However, the channels of interaction are usually strictly defined.

Therefore we can draw layers of influence, as only certain actions can be influenced by the player.

Utilizing the above Strategy Game example, a player can give his or her tanks a move order or an

attack order. However the player can't precisely control the orientation of these units or where the

guns will aim. Layers of influence can be seen as communication channels. The player invokes a

certain action by sending a message on a given channel, but there are a lot of actions which happen

as a result of received massages and are not directly player-influenced. This is unlike a character-

based game, where a Game Object can usually be shot at any time. We will discuss causality and

synchrony later as we speak about the core features of game engines, but keep in mind that the

"omni" part of omnipresence-based games will stress the Game Object systems quite a bit, as all

entities in the game would have to expect to be influenced by the player at any given time.

Strategy games look ugly. That's a common prejudice and there are in fact good examples to support

this point. Yet there are also good examples of modern Strategy Games (or similar omnipresence-

based genres) which simulate a believable, realistic environment. That's due to the fact that we are

not transcendent yet and are not used to an omnipresent view of the world, such as floating above

the battlefield. Therefore our brain automatically assumes some kind of abstraction and accepts less

detailed, conceptual graphical information, without trying to find issues or hungry cats. Compare the

issues of simulating a forest for example. In a First Person Shooter, you will relatively quickly notice

that it only consists of, let's say, ten different tree models, while a Strategy Game can produce good

vegetation results with far less diverse models. This of course also has to do with the perspective. In

an omnipresence game you are zoomed out and you will always see many more trees at the same

17

time, which reduces the required detail on a single tree. Typically, omnipresence-based games have

fewer graphical and environmental requirements compared to character-based games.

Once again, let me close this paragraph with a list of games I have chosen as references. Just as I did

for the character-based games, I will only state a few key notes on why I chose them and what my

focus was while analyzing them.

Real-Time Strategy Games Star Trek Armada II: Fleet Operations (18)
My own game, based on Star Trek Armada II (19)

StarCraft II: Wings of Liberty (20)

"Warcraft Engine", MMOG-like features, integration into social gaming

Supreme Commander (21)

Unnamed Engine, scripting language, massive physics simulation

Homeworld (22) and Homeworld 2 (23)

"Homeworld Engine", incredible clean source code, Game Object model

Sins of a Solar Empire (24)

Iron Engine, giant object counts, fractal generation, technologies to handle
both tiny starships and giant planets

Economy Simulations,
Economy Games

Anno 1404 (25)
Unnamed Engine, renderer (post-production effects), Game Object counts,
multithreading, interviews

Die Siedler II - Die nächste Generation (26)

Unknown Engine, reviving a ten-year-old game with new technology

Tower Defense Defense Grid: The Awakening (27)
Gamebryo Engine, no multiplayer?!, release mechanisms, interviews

3.3. Hybrid Games
There really seems to be no rule without an exception. This meta-genre classification is no

difference. The borders between characters and omnipresence are not always as clear as they are

when comparing a real-time Strategy Game to a First Person Shooter. Consider a tactical shooter for

instance, where a player commands an elite unit from an omnipresent perspective, but is only able

to influence the environment through his or her given handful of heroes, while still able to scroll

around the whole map. Wouldn't it be possible to draw a sphere of influence? However, it's

necessary to process Game Objects outside the sphere of influence, as the player is still able to see

them. Such a game could of course just use an omnipresent architecture, but a hybrid architecture

which takes these unique gameplay characteristics into account might better fit this scenario and

could free up processing time for extra effects.

Another example could be a role-playing game, where the player follows a group of heroes. If the

heroes split up in a dungeon, the player might be allowed to switch between them. This could lead

to very vast spheres of influence, pressing right up against the border of an omnipresent perception

of the game universe. The gameplay could solve this issue by dividing the different paths the

characters chose into different chapters, where the characters are played one by one and only

18

influence each other via certain channels until reunited again. Nonetheless, an architecture that

supports rapidly changing spheres of influence could lead to some very interesting options.

The hybrid nature of a game becomes very obvious if the mere genre description already classifies it

as a hybrid. My favorite, although quite aged example, is Battlezone II (28), a genre mix between a

First Person Shooter and a real-time Strategy Game. Players command a character from a soldier’s

perspective and may use vehicles like tanks and mechs. Yet, they also build up a base, gather

resources, produce new vehicles, and command squads. To do so, a commander is assigned, who

may enter a bunker, upon which the game switches into an omnipresent perspective. The

commander may now issue construction orders and assign units to squads, which are lead into

battle by another player from a first-person perspective. It's very interesting to see these options

combined. For example, the rendered details are reduced once the bunker is entered, the GUI layout

changes completely, and even the way Game Objects interact is altered. Similarly, First Person

Shooters have a crosshair instead of a mouse cursor, and mouse movement is not mapped on the

GUI-cursor movement, but is a direct Game Object state alteration (such as having a player face in a

new direction). With the “first person” mode, the channels to interact with an AI-controlled squad

unit are very limited - basically just a rough waypoint system. Omnipresence mode offers far more

interaction. Due to the age of Battlezone II (28) it runs well on all modern machines. Conversely,

back when it was released, the omnipresence mode was quite slow. Most interestingly, there are no

modern games which utilize this gameplay pattern. A slight hybrid touch can be found in newer

shooters too: for example the commander mode in Battlefield 2 (29). However, that's far away from

the complexity of a real "50:50" hybrid.

Real-Time Strategy Games and
First Person Shooter Hybrid

Battlezone II (28)
Battlezone II Engine, rapidly switching requirements, complex Game Object
model, both Star Trek Armada II (19) and Battlezone II (28) are based on the
same predecessor engine: Battlezone (30)

19

4. Architectural Principles
We will now start thinking about the actual architecture of game engines. If you have already read

papers or a book about this topic, you might already have encountered contradictory vocabulary or

even different definitions for what a game engine actually is. That's fine. Engine development is not

a science, and there is no global nomenclature. Every developer has his or her own private view of

the topic and that's actually an important point, as it allows for new views, methods and ideas to

pop up. There is a giant collection of definitions about what a Game Object actually is, for example.

Everybody has his or her own reasons and special view on the topic, originating from the usage case

of the engine. A character-based developer will have a different view on an in-game universe than

an omnipresence-based developer would have. However, if we want to discuss these topics, we

have to agree on certain terms. This theory part will supply the required definitions, which also

match the view I had when developing the Telesto engine architecture shown later.

So, what actually is a game engine? From a historical perspective, the first games consisted purely of

hardware. The first software games like Pac-Man (31), Tetris (32) or Space Invaders (33) were

directly implemented and their code could not be modified to play a different game, even though

Tetris (32) or Space Invaders (33) feature quite similar gameplay. Soon, game developers began to

use configuration files to describe parts of a game’s behavior, like Civilization (4). Its Successor,

Civilization II (34), was actually the first game I started to mod. It used ini-files to configure buildings

and units to produce and I made a small space-based mod for it. This type of development allowed

the creation of very similar games based on the same game engine. Still, the term "game engine"

arose years later, in the 1990s. The first game deploying a real engine, as we use the term today, was

probably Doom (35). It gave birth to the first incredibly popular engine series, the Quake (36) Engine,

with more than 50 games released until the current day, covering several genres and gameplay

characteristics, although the vast majority are First Person Shooters. Even the Source Engine, the

engine of the popular story First Person Shooter, Half-Life 2 (6), is probably based on the Quake

engine, which was used for its predecessor Half-Life (37). Another popular engine family is the

Unreal Engine, which was first used in its name-giving game Unreal (38). While the engine market

nowadays seems to be dominated by First Person Shooters, that's not actually true. There are a lot

of engines used for Strategy Games, like the unnamed engine used for Warcraft 3 (39). There are

strong hints that the engine of World of Warcraft (2) and StarCraft II (20) are also based on the

Warcraft engine, but this has not yet been confirmed officially by Blizzard.

Today, there is even a market for selling engines without games. Companies like Crytek develop a

game like Crysis (7) as marketing for their actual game engine, where they get the majority of their

profit. The large capacities of the Crysis Engine are demonstrated by Aion (12), an MMOG, while the

CryEngine was originally developed with First Person Shooters in mind.

For the context of this paper, a generic definition for a game engine has to be found, to cover at

least the current perspective on this changing field of development. For me, a game engine is

another abstraction layer, which offers an application programming interface (API) to manage an in-

game universe. A game engine encapsulates the actual collections, shared memory blocks, behaviors

or whatever approach one might think of and offers it in the form of Game Objects, universe

constraints or similar structures to the developer. A game engine allows the creation of different

games (probably of the same genre or metatype) on the same technological foundation. This invokes

20

an important question: are there modern games without an engine? In my opinion: yes, indeed. If

you start developing your first game, probably without in-depth knowledge of your chosen

programming language and environment or even without too much coding experience, you will start

with an idea of your game in mind. You will begin at some point, probably with the graphics, and

begin implementing your features. In the end, you might have mapped your idea onto your

harddrive in the form of a playable game. Yet, you will have implemented the features just to serve

their purpose in your idea. There won't be much abstraction and no real architecture. That's not bad

in the first place - just look at the incredibly popular old-school examples like Space Invaders (33).

However, games developed using this pattern typically cause a lot of trouble if logical game-

mechanics bugs arise or the game concept is extended. Sometimes it's not even possible to do so.

To define the game engine as an abstraction layer offers another question: what does the game

engine include? That's a very tricky inquiry to answer. Basically, the answer would be that it varies

from engine to engine. All engines offer an abstraction for the basic entities, often called Game

Objects, which map the logic of a game. They are usually closely linked to the game mechanics.

However, what about all the other aspects of a game engine like the renderer, sound, physics, AI and

much, much more? In some architectures, these are integrated into the core engine. Others just

offer APIs to communicate and declare stuff like the renderer as an external module. For a clean

definition, let us agree to the following in the context of this paper:

A game engine is an abstraction layer which offers an API to create, interact and destroy a game

universe. To do so, the game engine offers structures or APIs to control entities in the game universe.

This definition leaves the question open as to whether the presentation of the game universe is a job

of the engine itself, or external stuff, such as a separate graphics engine. In this paper, we will also

take a look at topics which could be encapsulated and be threatened as externals, like physics. In the

game industry, the choice as to what to include in development is usually a budget question.

Renderers are almost always developed as part of the engine, as they are very important key

presentation points to sell the engine later, while physics are often bought as third party packages

and only integrated into the game engine via an API or by synchronizing with a separate physics

universe managed by the physics engine. Nevertheless, a game engine will have to define the

principles to work with these external modules. Therefore, most game engines deploy a central

processing core, which establishes the runtime behavior of the game universe. It is often responsible

to manage time and causality as well as maintaining Game Objects or similar modules.

4.1. Game Development
Before we continue, let's take a brief look at the things that, no matter how you precisely define the

term game engine, are not considered part of a game engine, but are required to actually bring a

game idea from the sketches to the shelves. It is important to understand the links and requirements

a game engine has to provide in order to be deployed in a large-scale project like a commercial

game.

21

Figure 1: Game Overview

4.1.1. Gameplay

The rule set a game follows and the mathematical models behind game entities are often called

game mechanics or gameplay. For the purpose of this paper, I will call the scripts that actually

enforce the rules of a game the game mechanics, while the idea behind the game - the concept that

a game designer originally had in mind - is called gameplay. The game mechanics are obviously

linked to the game engine, as they are part of the in-game universe. On the other hand, depending

on if you count scripts as content, at least the API enabling the game mechanics scripts are part of

this universe.

4.1.2. Content

There is a large difference between an application and a game. An application usually does not

contain its own content as customers create the content with the tool themselves, while game

development includes creating both the content and the device to work with it. Content usually

includes meshes, sounds, levels, interface graphics, but there could also be game specific content

domains. A good example are voxel-models required for some of the new voxel engine experiments

recently popping up, like the id Tech 6 engine (40). These types of materials are easily identified as

content since the game engine uses them to make its current in-game universe state perceptible to

the user. However, there are other types of content where this definition will not work out, such as

scripts of a scripting language used to describe the behavior of Game Objects. These scripts are

closely linked to the game engine itself, as they define or influence the way entities in the world

interact with each other. It's a design decision as to whether or not one counts them as content. I

will not classify scripts separately in this paper, but instead count them as part of the entity they

describe or where they are used. Game Object scripts are part of the game engine, while scripts

defining material properties for a 3D renderer are content.

At the end of the day, content is one of the most important aspects in game development. Content,

particularly the graphics and audio content, is the first thing a player comes into contact with when

playing a game. Bad content can literally break a game before the player even starts discovering the

potentially superb gameplay. On the other hand, good content does not make a good game. There

are many examples of very popular games, like Warcraft III (39), which utilize older graphics content

(even at the time of their release), in order to reduce the hardware requirements and in doing so

have increased the potential audience, especially in the casual gamer sector. However, there are far

more examples which use state of the art content, but still fall into silence after a short hype period.

22

While content quality is very important for the first impact of a game, good gameplay is responsible

for generating long-term gaming experience.

4.1.3. Community

With the growing popularity of social networks and massive multiplayer online modes even in typical

singleplayer genres, building up a community and the resulting community management are key

sales points in modern game development. At first glance, this sector might look completely

independent from the technical aspects of a game engine. If a game engine does not produce

competitive results - for example, due to an old renderer - it might of course be difficult to establish

a community. Yet the community also has technical requirements an engine might have to take care

of. Most Massive Multiplayer Online Games (MMOGs) offer in-game customer service, called

gamemasters, to aid and assist players within the in-game world. These features have to be taken

into account when designing this type of engine architecture. If they are not, they would lead to

additional security requirements in order to establish in-game administration features, such as those

required for gamemaster services.

4.1.4. Deployment

To actually sell your game, you will have to bring it onto the shelves (real or virtual ones). This

involves a lot of marketing, publishing and release processes, which I don't want to cover here. One

could easily write a number of theses about this sector. I have simply summarized it as deployment.

Similar to the communities sector, there are a lot of links reaching from the game engine to

deployment. They are quite obvious: a good game is more easily deployed than a game with

technological problems (marketing can blur a lot here). In the context of this document it’s more

interesting if there are also links from the deployment that might reach to the game engine, of which

there often are. Consider developing an MMOG again, where "selling" the game means selling play-

time. An MMOG usually consists of two important parts. A client running on the player’s machine,

and a server, running on a larger server cluster. The server simulates the in-game universe, while the

client is basically just a screen to display the current universe state. While the game is running, a lot

of information is accumulated on the server. The way the server-engine deals with this information

can have a large influence on deployment, such as the maximum capacity of a server, potential

weekly downtimes or external tools like web services to view character information on your smart

phones. If you Google the most popular MMOGs, you will find a lot of these features to be very

important arguments to gather a community.

4.1.5. Porting

Developing an engine for multiple platforms obviously creates a lot of requirements. Consoles and

desktop PCs usually have very different hardware. This is especially visible in memory management

and graphics hardware. This problem gets even more severe if you also take smart phones or web-

based games into account. If it is decided to develop a game for multiple platforms, there will also

be an impact on gameplay, as different devices require different controls, like a multi-touch tablet

for example. Portability might also influence community management, due to a changing audience.

4.1.6. Tooling

Often forgotten, but still very important: developing the tools to work with the game engine. Time-

To-Market has become a valuable development parameter and allows a development team to react

on trends in their community, which is very important for entertainment products. Spending more

23

development time on tools and content-creation-processes is also necessary if a goal is to sell the

engine for 3rd party development projects. Modern tools indeed require being taken into account

during engine development. For example WYSIWYG editors require a renderer that is able to work

on both static (level) geometry and dynamic (level editor) geometry.

4.2. Game Engine Overview
Game development is not science, it is handcrafting. There are no strict rules or guidelines one can

discover that will always work out. There is not even a generic approach. For this very reason, there

are countless game engine implementations, countless approaches and countless views on

hierarchy. It would be far beyond the scope of this paper to talk about them all, especially because

new ones pop up each year. Nevertheless, we have to take a generic look at game engine

architecture first, in order to go further into the details of an implementation and to establish a

common vocabulary. The following chapter will show and explain an exemplary diagram of a game

engine by dividing its modules into different functionality sectors. The modules listed here can be

found in most game engines. Sometimes a few of them are fused together, or a new module

replaces one or more existing ones, but the basic functionality is always present.

Figure 2: Game Engine Overview

The left side of the diagram shows the seven core modules a game engine has to take care of, while

the right side contains the most important aspects or features of the respective module. We will

now take a brief look at each module and what it incorporates, as they are closely mapped onto the

Telesto Architecture that we will study more closely in the second part of this document.

24

4.2.1. Game Mechanics

The most important module for a game is of course the module that maps the game logic and ideas

defined in the Gameplay documents onto structures which may be processed. There are games that

may consist almost only of the game mechanics module. The presentation, graphics, sound and

interface, of a chess simulation, for example, will probably be very thin, and AI, networking and

physics could be skipped entirely. Such a lightweight chess simulation only consists of game

mechanic descriptions of the different figures, a game round, and allowed player moves, all of which

build up the chess universe. There are no real games which could work without a game mechanics

module. Physics games come into mind, where the player has to solve puzzles using gravity or

collisions. Nonetheless, even this approach requires the concept of a game round to determine

victory conditions, unless the game is a mere physics sandbox, where the classification, "game",

might not really be appropriate.

The vast majority of games nowadays represent the game mechanics encapsulated into Game

Objects. They might not be called that way, but there is always a structure that describes the

behavior of a game entity in respect to its game mechanic role. Good examples are player entities

which may carry and fire weapons. The process of picking up an item and putting it into an inventory

is a game mechanics process, as well as firing the actual weapon - at least as long as the physics

simulation is not as precise enough to simulate the complete firing process. Current physics engines

are not capable of simulating this complexity in real time, and it is probably safe to say that this

won't change within the next few years.

The Game Objects are often the most changed aspects of a game, especially during the post-release

maintenance period where bugs and balancing issues are solved. Balancing changes in particular

always have a large impact on the Game Objects or their supported features. The origin of this

relation lies between the ideas behind the different modules. The requirements of a physics engine

can relatively precisely be described during the development phases without much need of

alteration in later development stages, because physics engine have a lot of capability for

generalization. They implement a certain physics model, for example, rigid bodies with Newtonian

collisions, without having to know much about the precise usage scenarios and the game design

later on. The game mechanics, on the other hand, are closely linked to the view of designers on the

gameplay. It is exactly these ideas which change during development as new solutions for gameplay

problems come into mind or as balancing issues have to be considered. Due to the high probability

for changes, the game mechanics are often described using a scripting language, as scripts are much

faster to develop and mechanisms can be deployed to make the actual runtime core stable even if

changing scripts, by narrowing down the capacity of what the scripting language can access.

Scripting is also a benefit for tooling. A level editor is basically a tool to create Game Objects. A

scripting language allows complex actions to be designed by a level designer, like hacking into a

computer console or dynamic changes of the environment, without needing to know anything about

the actual Game Objects behind it. In reality, this does not hold true, as level designers require

performance relevant information and guidelines on how to use the scripts. However, these

performance operations could also be integrated in the scripting language API. A scripting language

also makes it possible to build a modding community.

25

Last but not least, the game mechanics include the routine which keeps the Game Objects in

temporal coherence and transforms the in-game universe as time goes by. The update routine is

covered in the in-game universe chapters.

4.2.2. Physics

Simulating believable real-time physics in games has become very popular in the past few years, at

least for the purpose of adding eye candy, like debris flying away after an explosion. Nonetheless,

many titles include third party physics solutions, as developers avoid programming the complex

physics engines themselves. Popular physics engines are PhysX (15), Havoc Physics (41) or the open

source ODE (42). With access to general purpose graphics cards growing for commodity PCs, we will

probably see new physics effects and improved precision in the next one or two generations of

games.

The field of physics is vast. When game developers talk about physics or physics engines, they

usually mean dynamics simulations with a collision detection and response system. In most games

this will be a rigid body dynamics simulation, but we already have titles around with soft bodies,

cloth, and liquids. To clarify: dynamics describes the forces (and their resulting torques), which cause

movement and action of objects (the kinematics of entities), while a collision detection and response

system handles the interaction of objects if they collide. Unlike our real universe, where objects are

delivered with their inherent properties (like being solid), a game developer, being a deity in his or

her own in-game universe, has to take care of all these things and tell the objects precisely not to

intersect. I will follow this game development tradition and refer to a dynamics simulation with a

collision system as physics in the context of engine development. Even if no dynamics simulation is

used in a game (consider an old Jump'n'Run for example), there will still be a collision detection and

response system in every game, otherwise our plumber would fall through the floor. Yet a game

engine is only considered to have "physics" if a dynamics simulation is present.

All physics engines have to deal with at least two constructs. These are Physics Objects and

constraints. Much like Game Objects, Physics Objects are entities representing the physical aspects

of the entities in the in-game universe. Depending on the chosen physics engine, this might either be

just a query system to access the state of entities in a separately running physics simulation or a

handcrafted entity model within the game engine itself, where interfaces allow the running physics

simulation to adjust values such as object transformations. The other important element the physics

has to deal with are constraints, such as atmospheric dampening or relations between objects. A

good example is the turret of a tank and the tank body. While both are separate physics entities,

they are linked to each other. Physics events happening to the tank body also have an influence on

the tank turret. There is a lot more to say about simulating physics, but I will keep this paragraph

short. There will be more information on physics implementations as we take a look at an example in

part two of this document.

We have just started taking a look at game engines and yet we have already found an important

point of conflict. Both the Physics Objects and the Game Objects describe different aspects of the

same in-game entity. Shouldn't there be actions where both of these aspects might conflict? This is

indeed a major problem of game engine architectures. The Game Engine Overview shows

animations as an example for this problem. A player might control his or her character by pressing

movement keys. This is induced by the game mechanics, yet it has an impact on the physics, as a

26

player is a physical entity. If a player tries to move through a wall, there is a conflict. The game

mechanics wants to move the entity further, while the physics engine calls for a collision. Policies

and algorithms have to be established to solve these issues. In this example, the policy might just be

"physics first", to ensure a player cannot pass through solid objects. Other animation examples, like

a mage moving its arms in a dramatic gesture to cast a fireball might just ignore physics altogether

and have the arms pass through walls if the mage stands next to a building, as these animations are

not that important for the overall physics simulation. Other examples might need the physics and

game mechanics to negotiate. For example, this might be the case if an object is to pass through a

tenacious liquid, where game mechanic inputs (like player movement) influence the physics

simulation, but the physics engine still has a word in the final simulation result.

4.2.3. Networking

If multiplayer - except multiplayer modes on a single console - are required for the gameplay,

networking will have to be part of the engine. While it might sound simple at first glance, it is one of

the most defining questions when designing game engine architecture. We will take a closer look at

the synchrony problems in the following chapters, including mapping causality in order to solve the

multiverse problem. In other words, keeping several game instances synchronized. I have dedicated

a whole chapter to multiplayer later on in the thesis.

The pure low-level aspects of networking - transferring data between clients - are identical to

problems encountered in server clusters or office applications. There are many good books about

these fields and I won't cover this aspect of game development in this document.

4.2.4. Artificial Intelligence

Creating a good AI for games is a very interesting and challenging objective. Nevertheless, I had to

skip this sector, as you could easily write multiple documents just about AI design. I will still try to

summarize the basics.

There are usually three different classifications for AIs in games. Assistance AIs are usually mere

scripts or routines deployed to establish functionality. If a player in a real-time Strategy Game issues

an order, the commanded units have to move to the target location, avoiding obstacles along the

way or engaging opponents in a target area.

Situational AIs are often just parameterized scripts which evaluate their results based on short term

memories. For example, this is used to implement autonomy functions or pure tactical opponents.

Consider a real-time Strategy Game again. If two tanks engage each other due to a player’s

command, a situational AI script could look for nearby buildings in which to automatically take cover.

Another example are bots in First Person Shooters. Most First Person Shooters require only a few

long-term memories, such as defining a strategy. They are usually just tactical decisions made with

precompiled script data. That's just the way most modern shooters implement their AIs. Each map

includes information for the AI, like movement paths, points of interest or power-ups. While playing

the game, an algorithm makes the bot move along these paths or from region to region until it

engages an opponent or difficult situations. Situational scripts will now attempt to solve the issue by

firing a rocket launcher or jumping over a wall. After the situation is resolved, the memories are

discarded or boiled down to a small set of attributes to alter the behavior in the next engagement.

27

Strategic AIs are very rare. That's probably due to the fact that they are very hard to implement.

There is in fact not a single game with a real-time strategic AI. Most games use precompiled data,

like the bot-maps in the last example, and situational scripts to solve unforeseen situations. This

works well for most genres. Real-time Strategy Games would - the name suggests it - be the perfect

test bed for strategic AIs. A strategic AI accumulates memories throughout the whole game and has

little precompiled information. In the above First Person Shooter example, a strategic AI would

probably be supplied with information on what different items and weapons do, but no information

on the map itself. While playing, the AI discovers the map and learns about the human players

present. It could adapt to certain patterns which are used by players - like camping with a sniper rifle

- and react to them. While this might sound a bit like science fiction, I'm sure we will see the first

strategic AIs in games relatively soon.

4.2.5. Graphics

Graphics are a well explained and important part of game engine architecture. Many books about

game development are actually books about developing a graphics renderer. This document will not

cover the actual renderer development, as it is both very platform and game genre dependant.

However, we will take a look on the interfaces required to connect a renderer to the game world

and the methods used to extract the current state of Game Objects to present them.

The renderer also requires a lot of resources: textures, meshes and materials. That's why the

renderer is usually very closely linked to the resource manager. A resource manager is required to

load and unload large resources from the hard drive. In most cases, a resource manager creates a

virtual file system which holds links to the files and manages their loading and unloading. In order to

hide the actual file access from the rest of the engine, asynchronous loading is used. This system

works by having files either flagged as loading with a caller deciding what to do on its own, or a

default resource is returned while the requested file is not ready.

4.2.6. Interface

Game development generally divides the user interaction into two fields: the GUI and the HID

handling. A human interface device (HID) is everything connected to the PC or console that allows a

player to interact with the game universe. For PC games, this is the keyboard and the mouse, as well

as other controllers, such as game pads, joysticks or exotic 3d controllers like the Space Navigator

(43) from 3Dconnexion (44). Consoles usually bring their very unique controllers. For instance, a

classic gamepad or 3D controllers like the Wii-Remote (45). A more recent development is multi-

touch-multi-user HIDs. A game engine has to receive events from the connected HIDs and translate

them into an internal format for further processing. For example, this could be by sending out

button-pressed-messages to an in-game entity which may invoke state changes of other entities,

depending on the pressed button. An exemplary interface, including HID handling and a basic GUI

framework will be presented in the second part of this document.

The graphical user interface (GUI) is the collection of all buttons, bars and text which float "before"

the actual game world, in order to offer interaction channels to a player. The complexity of the GUI

varies greatly from genre to genre. In a First Person Shooter, the GUI is just a device to present some

information, like ammunition and health, while in Strategy Games or MMOGs, the GUI is the main

point of interaction between the player and the game world. A simple GUI can be accomplished via a

bit of rendered information and a Game Object or two managing it, while a complex one should be

28

implemented via a GUI framework to be customizable. This is also a benefit, as the GUI of an MMOG,

for example, often changes during the game - something that is better implemented in an API or

framework rather than hardcoded constraints. A customizable GUI might also allow players to

develop their own interface additions, which could bring up a new option for community

management. For instance, World of Warcraft (2) has a large modding community, dedicated to

creating new GUIs for the game.

4.2.7. Sound

Sound engines are often bought as third party software, similar to physics engines. For example, a

very popular one is FMOD (46), used in Fleet Operations (18), a project I am helping to develop, or

commercial titles like StarCraft II (20). We will not analyze the details of creating believable sound

environments, managing sound channels and using sound hardware. Instead, we will concentrate on

connecting the sound engine to the architecture. The basic patterns are very similar to the graphics

interfaces and we will discover large similarities in resource management, too. We will identify a

generic approach to connect external modules, called extractors, which might also be used for other

data mining procedures in an in-game universe, such as gathering information for a web service for

an MMOG. However, let's first talk about this in-game universe that has popped up so many times

now.

4.3. The in-game universe
There is a great difference between developing a business application and a game engine. While a

business application usually serves several uses and might perform very complex programs (even

more complex than what we would encounter in any game) it still has a very different character: a

business application is a tool. It exists to be called at certain points in time, perform its job and then

close again. Its current state is usually closely tied to an input data set (be it saved data or direct

arguments passed along with a job by the user).

A game, however, simulates a universe. Much like our real universe, it is an ongoing process, where

actions take place due to actions performed by a player, or just because the rules of the universe

define them to happen. The current state of the in-game universe is constantly changing and,

besides the initial start state of the universe, the rules are the most important influence on the

current state. That's a fundamental difference, as it requires a continuous process.

Designing a game universe is basically a bit like playing god in your own domain. Before you can start

inventing any type of game entity, you will have to kick off your own universe. The fundamental

currency for actions is time. Let's take a look at time and how to implement it as our first game

universe feature.

4.3.1. Time

In our daily life, time is quite a boring thing. It always moves in the same direction - from the past to

the future - it always moves at the same speed and it always has a defined, unique point called

present, between the past and the future. Besides these basic principles, we also have to take care

of one principle which we experience in our daily life, but don't usually think of: time is consistent

throughout the universe. All entities which are linked to a certain point in time should have the

internal state of the defined point in time. In other words: if it is 9 o'clock on top of the desk, it

29

should also be 9 o'clock under the desk, or on a different continent (yep, our measurement methods

for time change as we fly around the globe, but that's just the unit, not the magnitude).

Having time moving in one direction and introducing a defined point called "now" is rather trivial.

The two tricky things we have to care about are the continuity and the coherence. Let's start with

continuity. Is it possible to write a computer program which simulates real, continuous time for a

simulated universe? Sadly, no: at least not with the same speed. That's quite easy to understand as a

computer program is just an abstraction for operations on your hardware which are physical

action/reaction chains. In order to produce a physical action/reaction pair, we require a certain

amount of time. If we want to simulate the time it takes to perform an action/reaction pair on a

simulated CPU we will have to do more real life action/reaction pairs to achieve the necessary

information. Therefore a continuously simulated in-game time would become incredibly slow. So,

what's the solution? Like all real-time applications, game engines skip the continuous constraint. By

doing so, we define our own derivative of time that we will use for the in-game universe. That's

important to notice, as, at this very moment, we agreed to start moving away from the real universe.

God's PC seems to be quite a lot faster than ours!

Sliced in-game time works as a chain of points of time. One of these points in time is called "now".

To get to the next point in time, we perform a transformation on the complete in-game universe

(including all entities, spatial or abstract), which transforms the state of the universe into a new

state, which is a certain amount of in-game time in the in-game future. Once the transformation is

completed, we arrived at the next point of time, which could now be called "now" and is a certain

distance (which is larger than zero) away from the last "now". However, performing the in-game

universe transformation took real time. There are two different patterns to deal with this situation.

4.3.2. Cycles

The transformation from one point of in-game time into the next point of in-game time is often

called a cycle, and I will follow this for the purpose of this paper. We will encounter cycles at many

occasions. Their management becomes especially important when talking about multi-threading.

During engine design, performance requirements are usually measured in time/cycle, such as "we

have 3 milliseconds per cycle to spend on physics".

4.3.3. Constant Cycle Length

One way to manage cycles is by defining the in-game-time elapsed between two cycles as a constant

value. So we now have three situations to look for. Either we spent less real-time to compute the

next "now" than our in-game time elapsed between the two points of time, we could have spent the

exactly same real-time, or we took longer to simulate the next in-game-time.

Real-time is less than in-game-time. In this case, we replaced the old "now" with the new "now" too

early. In other words, our in-game time became too fast. As the speed of the in-game time will

always vary a bit between two timesteps, that's nothing too serious, as long as the average speed of

time over a longer time span, which is noticeable for a human player, remains constant (a second for

example). All we have to do in this scenario is to wait until the real-time catches up with the in-game

time. Otherwise we could produce more and more points of times too quickly and end up with a

noticeable speed change.

30

Real-time equals in-game time. That's our perfect scenario. We took exactly as much real time to

transform the universe as we transformed it toward its future. Sadly, this never happens. However,

it is our goal to get as close to this ideal scenario as possible.

Real-time is greater than in-game time. This is the most difficult situation, as the in-game time is too

slow now. This usually happens if the in-game universe reaches a certain complexity. As it can't be

expected that the in-game-universe will suddenly become less complex, the next transformations

will also be too slow, and the player will experience a slow-down effect. There are several

techniques on how to deal with a complex scenario. Parallelization will be discussed soon.

Figure 3: Constant Cycle Length

The implementation of a constant cycle length is usually a loop with a mechanic to measure the

elapsed real-time (a whole topic of itself in multithreaded environments). At the end of the loop, the

elapsed in-game time and elapsed real time are compared. If the elapsed real time is smaller, the

loop waits for a bit. If the in-game time is smaller, it might simply continue, hoping to get faster

soon, or it might push some methods to reduce precision, yet speed up calculations in the next

cycles in order to catch up with real time again. Note that this "processing control" causes time

acceleration/deceleration effects which might feel awkward to a player. Most games utilizing

constant cycle length accept the slow-down effect to at least provide the feeling of a uniform time

scale.

A good example for a constant cycle length game is the Strategy Game Supreme Commander (21).

Supreme Commander (21) does a real physics simulation for all warheads and vehicles. Unlike many

games, the missiles do not already know if they hit at the moment they were launched, but they use

real ballistic characteristics for targeting. Therefore, a constant precision for their physics simulation

is very important, and that's why a constant cycle length should be preferred. This leads to the result

that a multiplayer game of 45 in-game minutes can easily fill a whole evening.

4.3.4. Variable Cycle Length

Another possibility is to use the real-time it took to calculate the last cycle as the in-game time step

for the next cycle. This ensures that the in-game time will always proceed at the same speed (some

minor noise might occur, but that's negligible). On the other hand, if a universe becomes complex

and the real-time required for a cycle update becomes very long, a cascading effect will occur. This

will increase the cycle length, as more and more time has to be processed within one cycle, which

will of course take even more real time. Therefore, a variable-cycle-length system will have to supply

features to reduce accuracy of calculations or even skip them, in order to return to a usable cycle

rate.

31

Figure 4: Variable Cycle Length

Figure 4 shows the problem of reduced cycles per second. Another problem can be seen here, too.

The changes between cycles might be a bit extreme for the average computer game, but it serves

the purpose for this example. If we take a look at Cycle 3, it becomes very long and exceeds the

acceptable threshold. An accuracy reduction pops in, for example by telling Render Objects to ignore

certain events. Cycle 4 becomes much faster now again, so the rendered objects are told to proceed

as normal. This leads to cycle 5 becoming quite long again. This ping-pong behavior can lead to a lot

of overhead. A certain delay should be put in place, for example by introducing a policy that an

accuracy level can only be changed once every five seconds or via a similar mechanic.

4.3.5. Prediction and Continuous Cycles

If a single cycle, no matter which cycle model is chosen, gets very long, a certain stuttering might

become visible to the user. Everyone who plays games every now and then will probably have

experienced this, especially if trying to play a modern game on an older machine, where speed

assumptions for processing during a cycle are not matched by the hardware. This issue is often

ignored, but some games deploy a technology to soften the stuttering, especially if the game

developers expect to have very long cycles at peak times due to highly variable universe complexity.

This is a typical scenario for real-time Strategy Games.

The solution to this problem is called continuous cycles, although this name is rather misleading, as

the cycles are still teleporting from one point of time into the next. Rather, a better name for this

model is prediction. The idea is not to think of an entity’s state as a value, but as a function. Taking

the past entity states into account, a prediction algorithm might interpolate potential next states at

points of time between the cycles. This allows a renderer - or a similar external module - to gain

information at the sub-cycle level. As soon as a new state is ready, the prediction states are

discarded and a new prediction starts for the new state.

This is of course not implementable for every kind of attribute a state might consist of. How should a

prediction algorithm predict the changes of a lambda function? However, that's not required. The

interface a renderer has to access is rather small, such as an object’s transformation, as well as some

rendered information or physical information like velocities. Likewise, the transformation-matrix and

velocities are easily interpolated by linear functions. In this way the Game Objects still transform,

even if the cycles get very long. This can easily be observed in modern MMOGs, where a cycle

requires network communication with the game server and therefore can last for a second or two

with bad connections. During these "lags", one can observe the Game Objects - like players - still

moving in their last set direction and instantly be reset once a new state for them arrives. Prediction

usually follows the constraint: "predict what is possible, ignore what is not". During architecture

32

design it should be kept in mind that prediction takes time and processing, even if just doing some

simple linear interpolation, such as using the last set velocity.

As the functionality to implement variable accuracy for calculation is difficult, especially if taking

multiplayer synchrony into account, there are only very few games that utilize this approach. The

overwhelming majority of games use constant cycle length. Nonetheless, a variable cycle length can

be combined with a constant cycle length system by running shorter prediction cycles - refreshing

the state attributes according to their current prediction velocities while the "real" main cycle is still

running. This way it's even possible to achieve a good prediction, without forcing the external parts,

like the renderer, to know about the velocities. This is a good approach to creating a uniform and

simple API for the external devices, as well as offering the option to turn prediction off on a client if

the extra performance should be required.

4.4. Parallelization
An important aspect of a modern game engine is to offer possibilities for parallelization to speed up

calculations. Multi-core processors are very common, and with general purpose graphic cards

appearing at the horizon for commodity PCs, parallel data structures will become more and more

important. Game engines could utilize parallelization by executing the updates during a cycle on a

Thread Pool or a similar structure. This is referred to as "parallelization per data", as all processing is

done for each data block (for example a Game Object). It is a relatively common and easy-to-

implement approach, as it is very intuitive. If you are given the job to paint 10 walls, you will

probably paint each, one by one. On the other hand, you might get a friend to paint 5 of them while

you do the other five, which is data parallelization. However, this simple and powerful concept has

some drawbacks, too. We will encounter them when talking about synchrony. Another common

pattern for parallelization is "parallelization per function", which means that all objects are

processed sequentially, but at the same time by different workers performing different actions. This

solves some of the synchrony problems, but might cause new ones with locking. A game architecture

might encapsulate the data into different functional domains in order to support "parallelization per

function". We will see this approach in action in part 2 of this document.

4.5. Causality
Causality is another aspect of our known universe, which seems rather simple to us. If you are given

two events, A and B, with the information that both are linked via a causal relationship, and that A

happens first, it is easy to tell that A invoked B, or that B is the reaction to A. That's because causality

is mapped closely onto time. Essentially, time is just a virtual currency for causal relations,

introduced to make talking about time easier. Consider an hourglass for example. Measurement via

an hourglass is very closely linked to the causal chains involved in letting the sand tickle through (our

default watch is of course linked to causality in the very same way. An hourglass is just a very easily

understood mechanism).

As a game engine already defines a new construct for time (discrete steps rather than a continuous

flow) it is quite straightforward that we will also have to define an in-game version of causality. To

understand the details, I will have to make a few assumptions that we will look at more closely in

later chapters. Let's define that the information of an in-game entity is summed up into a structure

called a Game Object. During a cycle, all Game Objects are called by an update function, which

transforms them into the next (in-game) temporal state. If events with causal dependencies are

33

happening in a very short time frame, it is possible that both the action and the reaction happen

between two in-game points of time. This means that both the action and the reaction have to be

processed in the same cycle. Consider the impact of a missile for example. The action (its impact) is

rapidly followed by its reaction (a shockwave), which will rip apart the wall of a building. The update

function will carry over to the Game Objects and push their update functions. The missile gets

updated and notes down that the shockwave has to spawn. The shockwave gets updated and notes

down that the wall should be destroyed and finally the wall will get updated and be pulverized.

However, this chain becomes lost if the wall gets its update message first. This would require it to

repeat the same update multiple times per cycle, which is unacceptable due to pure performance

reasons.

Figure 5: Causal conflicts during a cycle

The solution is quite simple. A game engine does not utilize causality as the real universe would. In-

game causality is usually defined as the flow of information from one game entity to another. The

sender is obviously the action and the recipient is the reaction. Note that this information is

completely unlinked to time. This enables parallel processing by blurring causality through time. To

use the missile example from above, once the missile gets updated, it leaves a message to spawn a

shockwave. During this cycle, the wall can be updated at any time. At the beginning of the next

cycle, all messages are being processed and the shockwave is spawned. All Game Objects are now

updated and the shockwave leaves a message to destroy the wall. Again, the wall can be updated at

any time during this cycle, too. During the next cycle, the wall will finally destroy itself as a result of

the message. Using this definition of causality, the engine can freely use parallel processing for

Game Objects with a relatively manageable processing overhead for causality (due to the message

processing involved). The drawback is a certain delay compared to real-world causality chains. But as

a game engine usually attempts to achieve a large number of cycles per second, it should be possible

to get enough causal updates per second to avoid blurring events within the magical 120 cycles per

second (the amount required to have a new state ready on every frame rendered by a renderer on a

default 60hz LCD display). A game engine usually processes several hundred - if not thousand - cycles

per second (that's of course just a rule of thumb and is heavily influenced by the architecture).

34

35

5. Multiplayer
It is almost unbelievable, but there are still games shipped in the year 2010 without multiplayer

capability. That's due to the fact that multiplayer is a quite difficult problem to solve without a giant

impact on game engine architecture. It will touch almost every fundamental structure, depending on

the way you want to achieve synchrony. However, I'm getting ahead of myself again. Let's first think

about what multiplayer actually requires.

Multiplayer involves offering the capability for multiple players to act within the same game world.

In the simplest case, all players are using the same device, or in other words, playing on the same

computer. That's a common approach for classic console games, where all players use the same

console and just different controllers. This scenario is rather trivial for a game engine, as it just

involves processing multiple inputs and associating multiple players to different Game Objects.

If players use different devices that are connected via LAN or Internet, the topic becomes more

difficult. In this case, each device runs its own game instance. Basically, the problem boils down to

synchronize several universes. Obviously, there is no (known) real-world picture for this type of

problem. Besides the naïve approach of transferring the complete universe state from one client to

all others, all clients have to achieve a certain degree of synchrony. This is in order to produce at

least similar universe states, to achieve the illusion that all clients are in the same game world.

There are many patterns on how to achieve synchrony. A straightforward one is to collect the

updates on Game Object states in some kind of record structure, often referred to as a cycle report.

A host client could now transfer its cycle report to all clients. Once they execute it, all will share the

same state. A cycle report has a relatively large transfer overhead, but requires no severe extra

constraints to take into account.

Strategy Games usually feature vast amounts of Game Objects, which have to be kept active at the

same time. Therefore, a lot of Game Object state updates might occur. Character-based games

might even be sufficiently synchronized by transferring Game Object state updates, as players

usually act quite closely with the world, and the keyboard and mouse input already maps closely to

Game Object state updates. For instance, consider pressing the "move forward" button, which will

map directly into a transformation or at least a translation change of the player Game Object in the

default First Person Shooter. Omnipresent games will usually die from lag if using this

synchronization approach. Consider pressing the mouse button while having a battalion of 100 tanks

selected. This is a very common operation in daily gameplay, which will order all tanks to move to

the clicked location. This invokes setting new target coordinates for a path-finding AI, which then

involves a lot of processing and a ton of transformation updates on all of the selected units.

In order to achieve better network usage for these scenarios, one might ask the question "okay, so

where do the Game Object state updates come from?", and that's exactly the right question to ask!

They of course do not pop up out of thin air. They are caused by a function call on the respective

Game Object (let's ignore dirty public fields for a moment). Considering the "move command"

example from above, we could reduce the bandwidth usage by at least half (if setting a new

command only invokes one additional state change: setting the new transformation. It usually

invokes a lot more of them). The solution would be to note down all called functions with their

36

arguments, instead of the actual Game Object changes. However, by doing so, we have to take a

look at some extra constraints:

If we utilize parallel processing (what we will always try to do) we also have to get a certain order

into the function calls. This could be achieved by accessing the global in-game time. All Game

Objects give tokens away to each function call and note down their order in the cycle report. Once

the in-game time changes, the tokens are reset. Yet this still requires an additional requirement: that

all functions are at least "slightly" side effect free. This means that if operation B is started while

operation A is still running on the very same Game Object, the result of A and B is still the same as if

they were running in sequential order. A and B could still produce side effects for future calls of their

respective functions, or for a function C, which is always executed after A and B is completed (one

could think of a cleanup step), but their side effects may not influence one another.

While this new constraint seems rather easy to handle, it usually causes quite a bit of thinking in

some tricky cases. Still, it is usually quite easily implementable. However, this synchronization

pattern has gotten us into another, much more severe, constraint: the function calls have to produce

the same result on all clients. This is of course linked to the side effects problem described earlier,

but there are also functions that have built-in side effects to produce their desired results. Variable

missile damage by utilizing a random() call comes into mind. Random() is often implemented by

defining a random host which distributes an array of random variables to all clients, of which the

random() results are then chosen.

5.1. Synchrony via Domains
Do we also have to synchronize pure getter functions? At first glance, one might state "no, of course

not, they don't change the state of an object". On the other hand, they are closely linked to resolving

the causality. Consider a fast car collision in a racing game for example. Car A and B are about to

collide. Client 1 updates car A, which is about to ram car B's side. During movement, the physics

algorithm (more about that later) is triggered. It gathers the current transformations of other Game

Objects and finds out that car A and B just had an accident. Another Client 2 might update car B first.

Car B moved a bit forward and then updates car A. Car A now actually misses car B! Client 2 reports

no collision and both cars continue to move.

This happens because a dynamic universe (exactly what our game engine is there to simulate)

always works with side effects. As long as objects just update their internal state - meaning they just

change internal values without asking for external information from other entities - everything is

fine. As soon as an object accesses any foreign information (either a global construct or another

Game Object) there is a good chance that causality is involved, which has to be taken into account to

achieve virtual synchrony. There are few solutions to this problem. The most straightforward one

probably is to try to reconstruct the precise update "path" a host took on all clients. This is done by

also transferring meta information, such as the order of Game Object updates. If side effects occur,

this solution hopes that the client universe is in the exact same state that the host universe was in

and that therefore the side effect will result in the same return value. The order of access to fields or

Game Objects is of course not the easiest thing to identify in a multithreaded environment. In this

case, one would even have to do per-thread-call lists, which becomes very tricky if we are not

working on homogeny hardware. This solution performs far better if parallelization is split by

functionality, and mechanisms (or at least policies) assure that the different functionality domains

37

(damage, physics, input, ..) are not linked via side effects, but a precise messaging system, which can

be serialized much better. In this way, each functional domain can be viewed as a single-threaded

system, where finding the order of access is no problem at all. Thus execution of a cycle report

containing the call order for each functional domain can be executed on any number of worker

threads, closely mapping the given hardware, as long as here is only one worker assigned per

functional domain.

5.2. Synchrony via Lambdas
Another solution is to also serialize the passed arguments a host receives as it called the function. If

a mechanic (for example, per definition of the scripting language the Game Objects were written in)

or a policy defines that all possible side effects of a Game Objects functions must be passed via

parameters, the possibility is given again to process them parallel without limitation. This approach

is closely linked to functional programming languages, if you see a function call as a pure lambda.

The result of a (pure) lambda is only dependant on its passed parameters (47). In a real game

scenario, there will always be functions that need dynamic side effects. The physics engine thus

comes into mind. If it attempts to find potential collisions, it has to at least check the nearby Game

Objects for their transformations. If this were mapped into arguments, then either the complete

Game Objects collection has to be passed, or preprocessing has to be done to find potential collision

partners. This has to be done no matter if the actual collision check would have been necessary, as

the physics function call might find out that the current relative velocities are positive – that all

objects move away from each other.

If the potential client hardware is very heterogeneous, there might be inaccuracy calculating values

which could lead to an asynchronous state. That's for example true if one client uses single precision

floats, while another one uses double precision floats. Even if the complete synchronization was

resolved successfully, they will still end up in different states. Therefore, most engines utilizing this

pattern are rather strict in defining the processing parameters of even the smallest engine routines.

This can be seen as additional constraints added to the engine as a whole, which makes porting

harder.

Considering a working on-function-call update pattern (we will take a closer look at its

implementation later), we have a very powerful utility to do character-based games like First Person

Shooters. Even complex actions in these environments map quite nicely on function calls. Common

interaction, like moving, firing a weapon, using a device or talking to a non-player-entity, perfectly

matches a few or even a single function call. If we take a look at the default Strategy Game, the

bandwidth usage might still not be sufficient. A single button click (giving a movement order) still

might cause a lot of function calls, as an order is an abstract construct itself and has to be converted

into actual state changes (and their specific function calls) via helper functions. Assigning a new

waypoint, for example, involves a path finding script, often part of an assistance-AI, to parse it.

During the process the assistance AI has to ask for positions of other Game Objects for collision

avoidance, which will produce a lot of management overhead, as we found out earlier.

5.3. Synchrony via Reconstruction
Are Strategy Games forced to do one of these two patterns? Nope, of course not. Games with

hundreds of mechs closing in on hostile bases would have a hard time to accomplish this. Let's just

follow the same pattern as how we determined the last solution to reduce network usage: where do

38

the function calls originate from? Or better said, what is the causal trigger for Game Object function

calls? In most cases, if one would make a heuristic analysis, the answer would probably be, "other

function calls ", which is not a solution that will give us more information. As a consequence, let's

zoom out a bit and take a look at the whole in-game universe again. If we ignore random functions

for a minute (as explained earlier, they are relatively easily solved for a synchrony scenario), a game

world simulation boils down to a video, as long as there is no user input. If we know the start state of

the in-game universe (something which we should almost always know, except for some scenarios

where a player joins a game round which is already running) and all the rules of a universe, we can

calculate the universe state of any point of time. Player input is the only thing an engine cannot

expect. From a game engine’s perspective, user input is the real "random", while the random()

function we would expect is just another side effect function call. So why not follow the above

principle and only synchronize randomness? In other words: only transfer the user input.

While this solution sounds like a very elegant one, it causes a large amount of extra constraints. The

problems are very similar to the situations described in the function-call-synchronization approach

using lambdas. However, now an engine has to make sure that complete processing, beginning at a

user input event up to the actual Game Object state update, is serializable and leads to the same

results without transferring too much extra information. Otherwise this would spoil the original goal

of reducing the amount of data to transfer. It is very difficult to summarize and describe the

problems of this solution without taking a look at an example, so I will skip them for now and come

to them later, as we will talk about actual game engine implementation in part 2 of this document.

The Telesto engine utilizes the reconstruction approach.

Games using synchrony via reconstruction may also allow players to adjust the maximum time for

transferring the input data. If connections are very slow, this creates a game without producing "lag"

every few seconds, but it also increases the time before the game reacts on local input. This is

another tribute to the perception of players. A player is usually satisfied if he or she is capable of

playing a game which reacts with a delay, but consistently, rather than a game which gives a "bad

connection" message. Such an option can be seen in the popular real-time Strategy Game StarCraft

(5), which is known to be playable even on the worst connections.

39

6. Game Objects
We now have a basic understanding of what an in-game universe is and how its rules are described

and enforced. I already used the designation "Game Object" from time to time as the name of an

entity in the game world from a game mechanics view, but I never talked about what a Game Object

actually is. It is time to change that.

There are at least as many definitions on what a Game Object is, or should be, as there are on game

engines. In the following chapters I will summarize the most common principles of Game Object

architectures. Before we start, let's try to find out what a Game Object could be. In a running in-

game universe, there are several types of entities. The ones that everybody notices are objects that

would also be called objects in the real world. These include parts of the game world for example: an

environmental object, like a tree, or a player object, like an Orc warrior. However, there are also

non-spatial entities in the world, like the representation of a player in a Strategy Game, a scripted

trigger activating certain events after a condition is met or certain environmental attributes like

wind.

If we consider all these different types of objects to be Game Objects, we will end up with a lot of

usage scenarios for them. There are, in fact, a lot of ways to implement all the logical and spatial

constraints that could be represented as Game Objects. Some engines map everything on a universal

Game Object structure, while others use different mechanics for spatial and non-spatial objects.

Wind, for example, could simply be mapped into a physics engine constraint with an API to configure

the state. No matter which approach is being chosen, Game Objects always invoke a complex

architecture.

6.1. Simple Information Models
The most common solution to implement Game Objects is to map them on classes, just like you

would in an office program. If you are working on a database tool to manage employees of

companies (probably the most common example, right after "hello world"), you would think about

what defines an employee and create a class corresponding to your findings. You will probably

create a "person" class first, from which the employee is inherited. Why not follow the same pattern

for soldiers, guns, and tanks in a game? There are good reasons to use this approach, and good

reasons to think of something else. It all boils down to the question, "what do we need?", again.

There are in fact modern games that use this technique, and these models can grow far beyond

anything one would describe as "simple".

The benefits of a simple information model can be found within the straightforward mapping of

objects onto classes or instances of classes. That's exactly what a developer should be used to and

inheritance is a very powerful tool to map relations. Yet, just like in a growing office program, there

are difficulties linked to inheritance, too. If there are multiple "is-a" relations on a single object,

multi-inheritance might be required, which tends to lead to a lot of copy and paste code, as it might

have to be mapped on interfaces (if you are working in a language which supports multi-inheritance,

the Simple Information Models become more attractive even for complex scenarios). On the other

hand, if the Game Objects are relatively unique and don't overlap too much in terms of their

functionality, this approach might still be useful. That's often true for First person Shooters, where

each character has its unique characteristics and behaviors.

40

6.2. Actor Models and Active Objects
Once performance tests are running on a game engine, it becomes obvious that there is a fixed

overhead per Game Object. The cause of this overhead is the update-call that all Game Objects have

to receive during each cycle, as the cycle-routine cannot know if the Game Object wants to do

something. The idea of actor models - better called active objects in the context of game

development - is to avoid this overhead by only updating objects which are currently doing

something, hence the name “active objects”. To achieve this goal, we will have to move the time and

causality loop from the global universe instance to each Game Object. Once an event is triggered,

the Game Objects will start a private simulation for themselves, refreshing their state. Other objects

may ask a Game Object for its specific state at a certain time and the Game Object will return it to

them as soon as it is available. The asynchronous "as soon as available" implies using a message

system, which is exactly what most active objects model do.

Figure 6: Active Object with a private simulation

The ability to manage the actual state-transformation-over-time simulation per Game Object offers

many interesting features. This approach is often used for scientific simulations, like a physics or

chemistry model, as it allows the actual behavior over time in the specific Game Object to be directly

overwritten, rather than relying on a "god instance" - the cycle update runtime. This is of course

much closer to the real behavior of things. Consider writing a simple chemistry simulation. The

scientist is able to program the complete behavior of an H2O molecule within the same code block

and does not have to wrap it in different on-collision, on-update, or on-reaction handlers. It also

allows a much better optimization for precision, as the complexity of the private simulation can be

adjusted per Game Object. A simple rigid body object could just refresh a transformation, while a

fluid simulation model Game Object might host a complete mini-game-universe with sub-Game

Objects representing particles. Active objects models are often used in scientific simulation, but only

very rarely utilized for real time applications. However, why is that, given that they seem rather

attractive?

The problem can be found in the fact that active objects do not share temporal coherence. This

means that at a given point in (real) time, all Game Objects within the in-game universe are of

different in-game time states. This results in some severe problems if objects are interacting with

each other. Consider two active Game Objects, A and B, which both receive an in-game event at the

same point of in-game time (tg0) and begin their private simulation. One (A) is a rigid body moving

41

through space, the other (B) is a super realistic liquid simulation. It's obvious that in-game time will

pass much faster for object A then it will for object B. Let's now have object A attempt to read a

value from object B at in-game time tg1. Let's call the real time point when object A reaches the in-

game time, tr1. At tr1 the state of object B is somewhere between tg0 and tg1. Object A of course

wants to receive the state of the accessed variable at tg1. Therefore Object A will have to halt its

simulation until object B reaches tg1. During this time, all objects that might want to access object A

will also have to wait. In an extreme case, this will lead to all objects being processed sequentially,

sorted by their causality, which is extremely slow.

Figure 7: Active Object dependency problem

Similar and even more severe problems arise, because the in-game time resolutions of different map

objects vary. Therefore it's possible that Game Object A will request a certain time state that Game

Object B never actually produced, even though both are advancing through time with the same

speed. These scenarios have to be handled via policies like interpolation, snapping to the closest

point of time, or similar constraints. In the worst possible case, active objects always require a lot of

caching, as all Game Objects have to remember all past states they produced.

The solution to at least partially solve these issues is to introduce a global clock mechanism, which

determines a minimum time. This means that all Game Objects are at least within the same time

window. All will halt until the slowest reaches the minimum time. By doing so, the chance for large

sequential chains is reduced and all states before the minimum time can be removed from the

cache.

A global clock that determines a certain time for all entities - doesn't that sound familiar? That's

exactly what a global cycle is. Likewise, we have even reforged the Update() method on all Game

Objects, only now it is a method that accepts the global minimum time and reacts on it. At the end

of the day, active objects give no real gains to game engines, which is why they are never used. The

benefit of active objects is the adjustable precision and the way they can be programmed. That's

why they are often used for scientific simulations. Nonetheless these simulations aren't real-time

applications. They produce a certain end state, which is a result or a video, but can take any amount

42

of time to do so. A game cares less for precision however, but requires a real time environment

where actions of a user are processed as fast as possible. Actor models and active objects aren't bad;

they are just not useful for creating an interactive real-time universe.

6.3. Modular Shared Memory Models
The desire to have a universal Game Object and optional modules that define what the Game Object

actually does is very attractive for developers. This allows a lot of salvage, since in the best case a

certain module might be reused for every instance of its application. For example consider a render

module which manages the rendering of an object. If this renderer module could be reused for every

Game Object, it would save a lot of work. A simple data model might inherit from a base object with

a render() function, but multi-inheritance might cause the render() method to be implemented

several times via copy and paste.

In reality, there will be object specific information which needs to be taken into account. The

renderer module example from above might require information about the actual model to render,

special effects or even dynamic structures like animation scripts. These parameters are often called

arguments of a module or configuration data of a module. Besides the different names, these

constructs strongly resemble lambdas, as you find them in a functional programming language.

Furthermore, that's actually the approach for shared memory models, where the Game Object just

supplies formatted memory - for example in the form of blocks used for the atoms of a functional

programming language - for optional modules assigned to a Game Object. A module manages its

part of memory of its own free will.

Figure 8: Modular Shared Memory Model

This approach of course requires a very tightly integrated scripting language. Many runtimes don't

offer sufficient support to isolate single atoms and manage them, so the runtime will probably have

to be developed along with the engine. A slightly different model is to move from a global variable

storage, where, in theory, a Game Object could access every attribute associated with it, to a model

where instances of the modules are stored per Game Object and each of these creates its own

memory. This works well with third party runtimes, as it simply requires the creation and

maintenance of a script block or environment instance, which is rather common.

Different modules are combined by simply adding them to the Game Object and giving them write

access to shared memory blocks - for example by supplying them variables to write to in the Game

Object’s script environment. In a real game engine, most modules are interconnected. The renderer

43

module, for example, requires transformations which might be produced by a physics module. To

access them, the render module just asks the Game Object if a certain value is available.

Unfortunately, this creates a new problem: the modules have to know about each other or have to

ask the Game Object if the required modules are present or at least if the required values are

managed by any other module. This circumstance either reduces performance, as more checks have

to be made at runtime, or reduces the reuse of modules, as they might have to be adjusted in

respect to different combinations. For example, this could be whether the transformations of a

Game Object are set by a physics engine, with additional acceleration information for the renderer,

or by a game mechanics module, which might just set the transformation depending on certain

conditions.

Yet, the goal of a uniform Game Object without inheritance is achieved and the shared memory

access is almost as fast as a direct field access used by simple data models. It boils down to replacing

a GetHealth() function with a GetValue(name) function, thus accessing an internal environment of a

scripting language. However, it also allows direct evaluation of scripts on the Game Object

environment. This allows shifting a lot of functionality into the scripting language without further

effort. I will demonstrate how an implementation of a modular shared memory model might look

like in the second part of this document.

6.4. Behaviors
The modular shared memory method already offers a relatively large potential for reuse of code.

Nevertheless, there are games where almost every Game Object requires very different

combinations of modules or highly situational scripts which tend to create interconnections between

modules. Namely, First Person Shooters. Consider the level of a First Person Shooter’s single player

campaign. Most enemies might be instances of a few classes, for example a default hostile soldier.

However, they will have very distinctive AI parameters. Some are positioned as snipers on a roof and

others rush towards the player. Later on walls are destroyed to open up new passages and other

scripted events take place, which override the actual physics engine for a more dramatic,

handcrafted effect. The ability to combine any modules during level development at will increases

the usability and development speed. That's the idea behind the behavior pattern.

The modules are renamed into behaviors and are no longer assigned memory blocks. They instead

store their private attributes in their Game Object specific instances. To do so, they might use an

environment of a scripting language or, if there is a known amount of data to be stored, they will

store them directly in private variables. That's completely up to the behavior´s implementation. A

behavior only knows its associated Game Object. If information or interaction with another behavior

is required, the behavior sends a message to the Game Object, which will serve as a message hub

and redirect the message to modules which can answer the message. To do so, each behavior comes

with a capability description, which tells the Game Objects which message types it may deal with.

44

Figure 9: Behaviors

A message system with message queues produces an overhead. A request first has to be packaged

into a message and then be sent to the Game Object and redirected to the proper modules. This

overhead is significantly larger compared to shared memory block access. However, the shorter

time-to-market and easier debugging of behaviors is often worth the performance loss, especially if

the game genre is not too dependent on the update speed of Game Objects and is instead limited by

other factors, like the speed of a renderer. Again, First Person Shooters are a good example, while

Strategy Games require very fast update routines and usually work with classifications even in their

game design (an Abrams Tank for example) which leads to a lot of Game Object instances with the

exact same module configurations during runtime.

Another benefit of the behavior model is that it is a very good opportunity for integrating

multiplayer synchrony. The messages already perfectly match the requirements of a synchrony with

lambdas pattern, as the messages are nothing but function calls. An agent could be implemented in

the Game Object, collecting relevant messages, ordering them following a given pattern

(multithreading has to be taken into account here) and serializing them into a report. Synchrony

would require additional processing and overhead for simple data or shared memory models.

6.5. Game Object Containers
We now have a rather good overview on what a Game Object could be and how it could behave.

However, we have still left the question open as to where and how the Game Objects are actually

stored. In most engines, there will be a global Game Object container storing all of them, with

different functions to receive Game Objects from it. The easiest implementation would be a simple

array, but that's rather suboptimal. Instead, the containers should try to use an optimized structure

to accelerate the most common calls. The implementation of the Game Object container is therefore

heavily influenced by the gameplay, even more so than the Game Objects. For example, a racing

game will probably have many calls relating to the position of a Game Object, such as collision

checks. Therefore, a spatial container like an octree will yield the best performance. A Strategy

Game, on the other hand, might produce many calls relating to the logical characteristics of an

entity; for example the units of a certain player. A hierarchical tree structure representing relations

between the game mechanics attributes of entities might be better suited for this task. I will not go

into the depth of how octrees, hierarchical structures or grids are implemented. There is a lot of

45

other literature about these subjects and their implementations are not directly related to game

development itself.

46

47

Part 2

Telesto Game Engine

48

49

7. Telesto
I called my architecture and implementation of a game engine “Telesto”. Or better said, Telesto was

the prototype that survived. Due to the large spectrum of components a game engine consists of -

we discussed the important modules in part 1 - it was impossible to craft efficient plans or UML

diagrams. I therefore chose a more direct way. I created a rough design plan with as much detail as

necessary to get an overview of the interconnections and APIs. In most cases, such an overview

diagram already uncovered architectural flaws or issues. If the plan seemed alright, I started

implementing a rough prototype. If the prototype was still not to my likening, I went back to the

sketch board and started over again. Of course, this might not have been the most efficient method,

but it offered some protection against severe architectural flaws that had been missed and could kill

your project once half way through. I nicknamed each architectural prototype (that was different

enough from its predecessor) after one of Saturn's moons. As Telesto is definitely neither the most

popular nor the largest moon, you can guess that many redo cycles where involved.

7.1. Motivation
The idea to create a whole engine from scratch arose a few years ago. I'm working on a group hobby

project, called Fleet Operations (18). An extensive mod (called a total conversion by the community)

of the Star Trek (48) real-time Strategy Game Star Trek: Armada II (19). During development, I came

into contact with a lot of architectural features. Or better said, architectural flaws, as you only notice

the architecture if it denies you from doing something. As Star Trek: Armada II is aging and quite a

bit away from what you would call modern, we started replacing modules, like the game mechanics,

with new, self-written ones. By doing so, the idea "why not do the complete stuff?" popped up.

That's basically where the idea of Telesto began. For now, the usage scenario for Telesto will be an

independent small game taking place in the Fleet Operations universe.

7.2. Goals
Defining the goals of a project as precisely as possible is the first step to success. Especially in the

gaming industry, where there will always be a ton of change requests. So make sure that at least

your basic architectural goals are well defined. As Telesto is "just" an engine architecture, without an

actual game being developed based on it, I could define the goals quite well. This chapter will

summarize them. Before we proceed, I should talk about the target usage scenario for the Telesto

engine and architecture. There are of course plans and relatively detailed gameplay documents for

games I want to develop on the Telesto engine, yet their development will start once the engine is

finished (or at least as finished enough to start development) and are not part of this project itself.

This protects me from too many change requests in regard to gameplay and game mechanics during

engine development. In a commercial project, game and engine development would proceed at the

same time. For instance, game mechanics prototypes, are often developed on an older engine - if

available - while the actual engine for the respective game is still in development. This can be seen in

an early image from the StarCraft (5) alpha, which was based on the WarCraft (49) engine, before

the actual engine was used for the final version, resulting in a complete redo of both the game

mechanics and the content scripts.

50

Figure 10: Early StarCraft alpha version, Blizzard Entertainment

The target metagenre which Telesto should be able to handle is an omnipresence-based game. More

precisely, the target genres are space-based real-time-Strategy Games and space-based MMOGs.

The first project based on Telesto will most probably be a space-based MMOG hybrid with a large

portion of strategy content mixed-in. This leads to a few critical core requirements, of which the

most important are to achieve an efficient handling of a large amount of Game Objects from an

omnipresence-based perspective (where no sphere of influence can be expected) and to implement

a highly efficient network code for low-bandwidth multiplayer.

7.2.1. No external dependencies

The goal of this project was to design a complete engine architecture. Utilizing third party software

modules would have denied this, as they always bring their own requirements, which in turn would

influence the overall architecture. I therefore decided to write everything from scratch, as this gives

me the most freedom. Many engine developers do this too, but only because they wish to be

independent from bugs in third party modules, which could delay development, or in order to

achieve maximum flexibility when it comes to modifying source code for a certain unique scenario,

which is always easier if you wrote the package to modify yourself (given you even get the source

code of a third party module).

Developing a complete engine from scratch also offers the potential to combine modules more

tightly. For example, this was true for Telesto's scripting language. The whole architecture benefited

51

from the low-level management options available, as LScript (the Telesto scripting language) and its

runtime don't run as separate modules and have to communicate with the engine via a pipeline. This

would have been necessary if they were a third party scripting language like LUA (50), but they are

instead directly accessible and modifiable by various engine constructs. We will discuss more about

LScript in a later chapter. Some commercial engines even implement low-level constructs like arrays

or complete memory management.

The only external dependencies for Telesto are the .NET Framework, which is obviously necessary if

programming in a .NET language, and SlimDX (51), an open source framework which tightly wraps

DirectX (52) to be accessible from .NET applications without superfluous functionality. SlimDX (51) is

rather popular for developing DirectX .NET applications since Managed DirectX was discontinued by

Microsoft in favor of their game engine framework XNA (53). XNA (53) was not an option for Telesto,

as it would have defined far too much of the architecture. Likewise, some characteristics of XNA,

such as the graphics pipeline, did not match my ideas and requirements.

7.2.2. Full .NET Project

I am a strong believer that C++ is no longer the one and only valid programming language for high

performance projects. Since I'm not a fan of the, let's say, unique syntax of C++, I was rather quick to

decide that Telesto should be developed "without a single line of C". My choice was Visual Basic,

based on the .NET 4.0 Framework (54), which was released shortly after I started the Telesto project.

There might be some good arguments to choose .NET over other alternative languages if the goal is

to avoid C++, but the truth is that I chose Visual Basic as it is my favorite language. Performance

measurements show variable results when comparing .NET and C++. A rule of thumb is that a .NET

application is about 80% as fast as a well written C++ application which does the same thing. Now

the devil is within the little words "well written", which is extremely hard to achieve in C++ (at least

for me, but most developers will agree), especially if working with a highly interconnected and

multithreaded project like a game engine.

Commercial projects generally avoid tying themselves to a development framework like Microsoft's

.NET. There are of course economic reasons, but also deployment difficulties. A .NET game might run

well on every PC which runs the respective .NET Framework, but you can send ideas for porting it

onto a console directly into the trash bin - except perhaps for a future Microsoft console. The Xbox

360 (55), for instance, least supports the .NET Compact Framework, but only a subset of the full class

library is available. There are also functional differences due to the hardware characteristics of the

Xbox, like limited thread functionality. Not the best prerequisites to begin porting, but well, porting a

game engine is always a difficult endeavor.

7.2.3. Maintainability and flexibility

You will find maintainability in the description of every software project and flexibility in at least half

of them. In the context of a game engine, maintainability means robustness in the face of various

changes which are involved in maintaining a game, such as adding or changing content and

especially game mechanics scripts. There are several ways to achieve this goal. In Telesto, I chose a

strict divide-and-conquer pattern, by separating the different functional domains, like game

mechanics and physics. As development went on, this proved to be an incredible useful approach, as

it allows development of each part of the functionality at a time, while still offering precise

interfaces to do testing. Otherwise it's hard to test and debug a physics module, for example,

52

without the rest of the engine being available. Still, complete separation was not possible, without

accepting a severe performance loss. The scripting language blurs the boundaries between the

different modules a bit, and there is a shared - but very lightweight - micro-core-runtime. This serves

as the global universe clock and offers some generic functionality, like access to the resource

manager (which itself is separated in a module, too). As long as the performance impact was not too

severe, I decided to chose the most divided design, in order to achieve a high potential for

modularization. If performance went down too much, I chose a faster solution. At the end of the

day, we are developing a game engine: performance is king.

Flexibility is connected to maintainability, but it usually means a different aspect. Flexibility covers

the ability of an engine to be adjusted, apart from the common dimensions of changes that pop up

during the maintenance phase of a game. This could, for instance, be the process of integrating a

new renderer or a new renderering feature. The latest 4.0 patch of World of Warcraft (2), for

instance, introduces a new DirectX 11 renderer and new renderer features including improved

reflection and water effects. This is a strong hint for a very flexible engine. This can be achieved via

separation, just like maintainability, but there will always be some links which are hard to come by.

For example, this could be the link between the resource manager and the renderer. The resource

manager generally has to know details about the renderer, if it is to create and manage the resource

handles for textures on the graphics card. These links were broken in Telesto by utilizing a

distributed resource system, with the resource manager simply offering a shared file system. There

are also several exchange formats for resources and other information. Telesto also makes strong

use of descriptions. This has allowed me to identify a specific minimum functionality platform, the

Telesto Foundation, with shared APIs to add external modules, like the renderer, AI or game

mechanics. This offers a maximum flexibility to add next generation renderers without redoing the

content, while still keeping as much performance as possible. Just as with maintainability, my credo

was "performance first". More about these details in the next chapters.

7.2.4. Synchrony via reconstruction

A real-time-Strategy Game with its omnipresence-based players and a highly variable Game Object

count combined with strong multiplayer dependency of an MMOG literally cries for synchrony via

reconstruction. It was in fact one of my first design decisions to implement this pattern. I was quite

lucky to stumble across this question so early, as it had a far greater impact on development and

architecture design than I had imagined. If multiplayer is the goal of an engine, I can only

recommend one to think about synchrony as soon as possible.

Synchrony via reconstruction is definitely the most difficult multiplayer pattern to implement and it

caused the scrapping of more than one Telesto architecture sketch. Telesto offers a Synchrony Brush

framework to implement synchronized causality. What exactly a Synchrony Brush is will be covered

in a later chapter. For now let's say it is a modular structure to implement causality. Interaction and

APIs for the brushes changed a large portion of the LScript API and caused many processes to

become asynchronous, what caused additional management overhead. Therefore, I would not

recommend to implement synchrony via reconstruction unless necessary. A First Person Shooter

engine would work perfectly with a simpler system. A Strategy Game won't, as long as you want

many players in the same game round (this seems to be the reason why Strategy Games are still

fixated on the "eight players per game" we had a decade ago).

53

7.2.5. Prototype

Last but not least, Telesto is a game engine and a game needs to be played! I don't need many words

to explain why a prototype was absolutely necessary. A prototype is of course an important tool to

test performance and usability capabilities as well as development workflow and the efficiency of

the APIs. What seems to be elegant during engine development might end up being impracticable. I

had many good experiences with prototyping during the development of Fleet Operations (18).

7.3. Exclusions and options for the future
Game engines are developed by dedicated teams in two or more years and delays of even a few

years are nothing uncommon. Doom 3 (56) was, according to John Carmack, originally planned for

2003, but its final release was in 2007. With this in mind, it is obvious that Telesto must be lacking

something, as it was developed by a single person in about half a year. My goal was to end up with a

playable prototype of the architecture, in order to begin development on a small demonstration

game as soon as possible. The missing gaps are therefore optional elements or in-depth extra

features which are not ultimately required. The full minimum feature spectrum of a game is

implemented and running in the Telesto prototype. For a better overview, I will now list the

elements I did not count as part of this project, but will include in the next month. The list will also

include some optional features which are not really required, but high on my wish list.

Renderer Developing a powerful renderer capable of up-to-date effects can take a
year or more. I therefore did not include the development of a modern
renderer as part of this project. The prototype of course features a basic
renderer - otherwise it would be quite a dark game - but it is lacking
impressive post production effects, deferred rendering and similar features.
It is just a simple DirectX 11 renderer to present the engine itself. The
Telesto architecture supports modular renderers. Connecting a new
renderer is just a single statement. Development of a more advanced
renderer will therefore not affect the rest of the engine architecture.

Artificial Intelligence A real-time strategic artificial intelligence system is still undiscovered
country. There are no real strategic AIs out there. For the scope of this
project, I ignored the AI altogether, although the architecture already
supports necessary interfaces, like an extractor, to achieve an AI world or
input modules to connect the AI just like an human player. I will probably
venture into this sector more for a separate project.

Optimization The Telesto prototype offers the full spectrum of functionality required to
create a demo game. Yet, most modules still offer room for performance
optimizations. The current implementation was made for a maximum of
functionality, rather than performance, as highly optimized code is hard to
change or refactor. That's a common approach for commercial projects,
too, where performance optimizations are often done via patches in the
maintenance period of a game.

54

Physics Constraints The current physics engine is a rigid-body dynamics simulation. This is quite
sufficient for a space-based game, which is the usage scenario of Telesto.
Yet, I want to implement a few more constraints in the next month, for
better damage visualization. This includes model deformation and a
combination constraint that allows one to slice through a starship’s hull and
separate parts.

Tooling Development tools are an important part of an engine, as they may speed
up the content creation pipeline. At the moment, the development tools for
Telesto are rather simple. The scripts are edited via Notepad++ (57) and I
wrote a few scripts for 3D Studio Max (58) to export geometry. I will start
developing a better LScript IDE next and a more powerful 3D Studio Max
(58) plug-in is also on the “to do” list.

55

8. The Telesto Architecture
The Telesto architecture divides the engine into three large sections: the Core, the Foundation and

External modules. This was done for several reasons. First, separation brings clear interfaces. This is

a great benefit during development, as it allows one to define good module tests, which are still

relatively close to the real use case of a running game. This compensates for the tendency of module

tests to become too abstract, especially if a highly dynamic part like a scripting language is involved,

which is hard to module tests completely.

An additional, less obvious feature of a multi layer architecture is the better control of incoming

change requests and feature management. Each layer acts like a kind of portal. As long as a change

request does not pass a gate in its functionality, only a certain part of the application’s code has to

be changed, which greatly stabilizes an engine. For example, let's consider a new physics engine or

that a new physics engine feature has to be implemented, such as model deformation. This is a

relatively deep change. It of course has an impact on the "Externals" layer, as a renderer has to be

able to draw the model deformations (model deformations are generally not stored as new models,

but modifications on a deformation grid projected around the actual model). The "Foundation" layer

contains specific modules of a universe, like the physics engine. This layer is obviously touched too.

Kinematics will have to be changed and the collision response systems will have to create proper

deformations. The "Core" layer, however, is untouched. It contains the basic runtimes, like

simulating time, calling objects and offering the scripting language. Therefore, for the purpose of

enhancing the physics engine, we can see the complete Core as a black box. This improves stability

of the whole system, as there are larger subsections which are completely unchanged.

Similar benefits are always utilized in application development once a certain complexity is reached.

Yet, they are often discovered situationally or - in the worst case - they pop up by accident. In order

to produce a complex piece of software - like a game engine - in a short amount of time, it is

incredibly recommendable to actually design such functional borders and modular separation during

the architectural design phase. Separation also brings problems which have to be taken into account

during architecture development. To continue the example from above: the physics are part of the

Telesto Foundation. This means that the actual time and cycle management is unavailable to the

physics engine, as that's part of the "universe runtime" located in the Core. Yet, a physics engine has

to subdivide time once a collision has occurred, in order to achieve the most precise collision

conditions. The physics therefore mess with time. This will have an impact on the design of other

elements, like scripted physics-based animations. These animations are an element of the

Foundation, too, but are not necessarily sub-dividable in their temporal behavior. The architecture

or APIs have to react to these constraints and dependencies.

8.1. Visual Basic
Naturally, the chosen programming language has a large impact on the resulting architecture. Visual

Basic offers some rather uncommon constructs and features which are worth summarizing to get a

better feeling for the actual implementation. The most-used feature in Telesto are definitely

Modules. Modules break Object Oriented development patterns, as they allow one to put functions

directly under a namespace. Behind the scenes, a Module is created as a shared (the .NET notation

of singleton) class and the compiler resolves references automatically. This shortens code

56

tremendously, as it allows one to write Spawn(..) instead of

Telesto.Game.GameObjectContainer.Spawn(..).

Unlike C#, Visual Basic was not configured for performance, but for reliability and security. A

relatively intense compiler configuration was necessary in order to receive sufficient performance.

The compiler configuration is not covered in this document. Microsoft has released a paper on .NET

performance improvements: Improving .NET Application Performance and Scalability (59).

57

9. Core
The Telesto Core contains the basic functionality that keeps a universe running. The Core is rather

universal and could be used for most genres. The following chapter provides an overview for its

prime functions.

Figure 11: Telesto Core Overview (Functionality)

9.1. Time and cycles
The cycle’s runtime is the core module of Telesto. It supervises the cycle management and calls

modules or Causality Brushes to create temporal coherence. It also features elemental core

functions like starting, pausing, and ending the game. It also has to deal with potential delays of the

various subsections. In other words, the cycles, the time loop and its management structures are

what actually create the in-game universe and serve as a central node for the Core, Foundation and

all external modules. Without it, Telesto would just be a collection of APIs and objects to do game

procedures. The cycles brings the "real-time" into Telesto.

Telesto uses layered cycles to process different functionalities in different resolutions and features a

comfortable framework for cross-cycle processing. The straightforward purpose of the time loop in a

game is of course to update the Game Objects. As described in part 1 of this document, there are

two ways to do this: either with a constant cycle length or with a variable cycle length. As Telesto is

designed for Strategy Games or MMOGs it will have to deal with massive amounts of Game Objects

and a relatively complex game mechanic - shooters tend to be quite simple in this regard. A larger

Game Object count makes it less feasible to integrate procedures to reduce the processing time

dynamically, as a certain static overhead per Game Object is always involved. Using a variable cycle

length, this could lead to overly complex scenes without a chance to solve the situation. That's why I

decided to use a constant cycle length for the generic update loop.

As I have to expect very complex universe states with many upgrade routines, I decided to make the

cycle length quite long compared to similar game engines. To compensate, I added a variable length

58

prediction cycle, which runs while the update cycle (called a Brush Cycle in Telesto, as the Causality

Brushes are resolved. More about that later) is processing the next universe state. The prediction

cycles transform velocities on attributes - like the translational velocity in the context of the physics

engine - into states for presentation (like the renderer). This can be equated to approximating a

function through linear intervals: If we see the whole universe state changing over time as a

function, then the Brush Cycles draw points in a fixed distance, in order to provide causality. The

prediction cycles will approximate the function between two brush-cycle-points as close as possible

with the performance available. If the speed slows down, the prediction cycles will get longer and

less precise. They might grow up to the length of a Brush Cycle, but a Brush Cycle cannot be missed.

In addition to these two cycles, there is an additional time dimension: the Safe Cycles. These cycles

are even larger than Brush Cycles and add the user input to the universe. The follow diagram shows

a realistic example of the cycle duration settings as used in a Telesto demo application.

Figure 12: Telesto cycle layout

The prediction cycles are of course much smaller than the diagram above suggests. The Telesto

architecture typically runs with 500 000 cycles or more (multiple millions) per second, depending on

the current universe and the hardware it is running on. This allows very smooth prediction, hiding

the relatively long Brush Cycles, where causality and events are processed. In fact, the Brush Cycles

are for the Safe Cycles, what the prediction cycles are for the Brush Cycles. From an engine's

perspective, all universe states are functions, as long as there is no user input. From an engine's

perspective, the user input is the real random. This means that the Safe Cycles are actually the point

at which real universe changes happen - the universe function is changed into another function, to

stay with the image above. The Brush Cycles serve the purpose to get a higher resolution for causal

events, which reduces the processing required to resolve causal changes which happen during a

cycle. This was already discussed in part 1 of this document.

The time is measured in microseconds, using high resolution hardware devices. It is important to use

a thread-safe measuring method, as the real time elapsed (or at least something close to it) is

required to organize the cycles, and not just the time the main thread where the loop runs in was

active. Most OS-clocks are thread-based clocks and therefore the hardware devices should be

preferred. Still, an engine should be robust to fluctuations in time measurement, as even the

hardware clocks have their "unique" behaviors in some situations, like jumping back in time or

offering highly variable intervals. Note that only the time resolution of Telesto is in microseconds.

The precision of time measurement is about half a millisecond on modern main boards. Setting up

correct time measurement is the first difficult task encountered during game engine development.

59

9.1.1. Brush Cycles

Most of the processing of Telesto happens in the Brush Cycles, so it would be best to take a closer

look at them. Safe Cycles add input handling, but this will be discussed in a dedicated topic later on.

A Brush Cycle begins by checking if all simulations - for example the physics - are completed. It

should not happen that a simulation takes longer than 10 milliseconds to complete - the Telesto

engine is rather tolerant with a 10 millisecond cycle length. Most comparable engines require cycles

of 1-2 milliseconds to achieve fluent results. Yet, the engine simply has to check if everything is done

before starting the next cycle. If a simulation is still running, the engine will have to wait, slowing

down the in-game time as expected.

If all simulations are complete, the engine has reached an idle state. This is the very short time

window where synchronous operations can be applied. That's right where the Causality Brushes are

fired. Generally speaking, the Causality Brushes apply the results of the simulations on the entities

with respect to defined causal constraints. Obviously, this has to be done in a synchronized window,

to assure that network synchrony can be achieved. If other threads access entities while changes are

applied, it is impossible to achieve the same result on multiple clients without significant overhead.

We will cover more about Causality Brushes and multiplayer synchrony in a later chapter. Once the

synchronized window is done and all synchronized operations are completed, the simulations are

begun again to produce the results for the next cycle, and thus the Brush Cycle is finished. The

following snippet shows a very simple and cut-down example of a Brush Cycle's implementation in

Visual Basic .NET.

1 While Not PhysicsObjects.SimulationIsDone

2 Console.WriteLine("Waiting for physics!") 'ToDo

3 End While

4 While Not GameObjects.UpdateIsDone

5 Console.WriteLine("Waiting for mechanics!") 'ToDo

6 End While

7 PhysicsBrush.Paint()

8 SpawnBrush.Paint()

9 'Start the next cycle:

10 PhysicsObjects.Simulate()

11 GameObjects.Update()

This example uses two brushes, enabling physical interaction, such as collision and spawning new

entities. The delay handling for slow simulations has been skipped. Depending on the way in which

the cycle loop is designed, this could either be done by halting the in-game time measurement until

everything is completed or by waiting in a loop, while the in-game time continues, just like in the

example above. As the hardware devices can't be halted, the first option requires a complex

handling of the in-game time. This could be done by accumulating an in-game time offset which is

increased by the time the game spent waiting on the simulations during each cycle, but this could

lead to jumping timestamps for prediction cycles. The second option features the potential problem

that a Brush Cycle waits so long that once it is done, the next Brush Cycle should already have been

completed. In this case, the universe could travel back in time to produce the next Brush Cycle

directly after the delayed one. This has the result of slowing down in-game time, but this happens

60

for constant cycle length either way if delays get too long. This pattern requires that prediction

cycles do not run during the execution of the synchronous part of the Brush Cycle, but only during

the asynchronous simulations. Otherwise, the prediction cycles could already have altered entities

for points in time that the engine is about to jump back to. The current Telesto demo

implementation uses this technique.

9.2. Lisp and LScript
Script languages are generally deployed in modern game engines. They offer efficient descriptions of

complex game mechanics, without having to recompile and link the whole application over and over

again. Balancing especially involves many adjustment cycles where values slowly close in on their

final values. In the gaming industry, scripting languages are also used to offer separation from engine

development and game design. This allows the balancing team to do a complete job without having

to call back the engine development for recompiles. Another important feature of scripting

languages is to feature modding capabilities for players, which might have an important impact on

the popularity of a game. It especially increases the long-term player counts, as users will make their

own content and deliver new game experience without having to be paid.

However, the way a scripting language is used, differs largely from engine to engine. World of

Warcraft (2), for instance, only uses LUA (50) to for interface actions. A LUA runtime is implemented

in the local game clients and all interaction with the actual game - and the MMOG server - happens

via events and messages. Other examples, like Supreme Commander (21), describe a large portion of

their actual game mechanics in the scripting language, like spawning missiles or dealing damage. If

this approach is used, only low-level functions are made visible to the scripting language.

Telesto uses its scripting language, LScript, for almost everything; from game mechanics descriptions

and GUI up to configuration and resource descriptions. The script engine atoms are even used for

shared memory management. This is possible because LScript is very tightly integrated into the

game engine. LScript is implemented in the Lisp namespace. This might seem odd, but LScript is

actually just the syntax and the parser implementation with some parser features to ease

development and a bytecode compiler. The system running behind LScript is a Lisp implementation

with optimization and adjustments to fit best for the requirements of a Strategy Game engine. Lisp is

an ancient functional language, originally specified in 1958. It features no real syntax - the syntax is a

direct description of the abstract syntax tree, but modern Lisp implementations usually feature

some "syntax-candy" to make working with a prefix notation a bit more enjoyable. Even with an age

of more than 50 years, Lisp is still a very capable and efficient system. Many more recent languages

like Smalltalk (60) or Haskell (61) are strongly influenced by Lisp and share the basic structures and

ideas. The charm of Lisp is its minimalistic nature. A basic Lisp runtime contains a handful of classes

and a 10-lines parser, so it is implemented in about half an hour. Therefore I often use Lisp as a

foundation to create my own, project-dependant functional scripting languages. In order to

understand the changes made for Telesto's Lisp implementation, we should first summarize the

requirements and characteristics of a game engine in respect to its scripting.

61

Fast Evaluation A game engine updates hundreds or thousands of Game Objects per
cycle. If the scripting language is used for game mechanics
descriptions, the evaluation time of an expression becomes critical.

Small Memory Footprint Besides pure performance in terms of evaluation speed, the memory
usage of resources is generally an important magnitude for game
development.

Garbage Collection friendly As .Net is a garbage collected language, it can be of importance for
performance optimizations to tune the scripting language in respect
to its object creation and destruction behavior.

Fast Parsing Scripting languages are often used for many different purposes in a
game engine. As in Telesto, if the scripts are intended to also store
large data, such as models, the parsing speed becomes a relevant
factor. A byte code read/write might be required.

Locking Many Game Objects will be updated at the same time, but it is also
probable that multiple scripts are evaluated for the same Game
Object at the same time. This might involve dealing with locking; a
topic most functional languages don't have to bother with.

Repeating Evaluations In the typical game scenario, there is a large probability for recurring
requests. This could include asking for an object’s transformation or
the hitpoints of a unit for a GUI display.

Known scripts While the game is running, all potential scripts in the complete
system are known. This is because a user does not insert new scripts,
but interacts with the game via lambda calls (such as a button press).
In contrast, an application will have to deal with user-created scripts
at runtime.

9.2.1. Avoiding Lisp call-chains

The basic and most important element in Lisp and other functional languages is the lambda. A

lambda is an anonymous function, allowing functions to be passed around just like normal

information (integers for example) in procedural languages. The name is derived from the Lambda

Calculus, a generic function description system. Dealing with functional languages is very rewarding.

My whole view on problems and the way I write programs changed as I started to venture into Lisp

and Smalltalk years ago - and, at least from my perspective, my coding improved. That's especially

helpful as functional concepts, like lambdas, are returning to the procedural world at the moment

and there are several widely spread functional languages, like LUA, or new ones appearing at the

horizon, like the newest .NET child F#. Dealing with the very interesting details and the opportunities

of functional programming would go beyond the scope of this document. I will state the most

important facts about Lisp as I talk about game-relevant aspects, but if you want to read further, I

may recommend Lambda the Ultimate (47), a good site about all kinds of functional languages.

62


for further reading...

Lambda the Ultimate
http://lambda-the-ultimate.org/

An extra constraint is often added to a lambda: its result only depends on its arguments. In the

context of this paper, such a lambda will be called pure-lambda. Common functional languages

contain both pure and normal lambdas, with the great majority being normal lambdas. Both pure

and normal lambdas contain a list of arguments they expect and a body, which contains the actual

procedure and returns a value. The following example shows a lambda which returns the maximum

of two numbers. Note that, unlike in procedural functions, there is no "return" statement, as every

function in a functional language inherently returns a value.

1 ;A lambda expression in Lisp:

2 (lambda (m n) (if (> m n) m n))

1 //The same expression in LScript:

2 Lambda(m, n, if m > n then m else n)

Lisp defines another important element: the environment. An environment is just a list of key-value

pairs which contain atoms or lambdas and their corresponding names, which are addressed as

variables. A function call is implemented by creating a new environment, containing the passed

arguments. The global environment (or the environment in which the function call took place) is

then appended at this so-called closure-environment, by adding the global one as a parent to the

closure-environment. The body of the function (the lambda's body) is now evaluated on the closure-

environment. If a variable is accessed, which is not present in the closure-environment, the request

will be passed to the parent-environment. If the lambda's body contains a new lambda call, another

closure-environment is created and the existing closure-environment is added as the parent. This

behavior can lead to long parent-child chains of environments during evaluation. This approach is

simple and powerful, as it allows easy implementations of closures (variables used in a lambda are

still available even if the context they were created in is no longer available). Yet, from a

performance perspective, this could lead to quite suboptimal behavior. Consider 10 chained function

calls (nothing uncommon in a functional runtime), and the 10th lambda requests a global variable,

stored in the first root environment. This would require it to climb through the complete chain each

time the variable is used. This approach also creates one new object per lambda evaluation, which is

- in most cases - immediately disposed of again once the evaluation is done.

In order to improve these issues, a question has to be answered first: do we need closures? Closures

are a powerful feature for runtimes. Yet, in a game, a player will not type new lambdas (besides a

development console, but that's not the default in-game situation). Instead, all potential lambdas

are already present as the game is loaded. New ones might be constructed during the game, but if

so, they are the result of other, existing lambdas and therefore expectable. This allows one to

relatively easily wrap a closure by saving the required variables in public fields and avoid naming

63

conflicts, if the closure pattern is required. With discarding closures, call-chains are gone and all

lambdas can directly be evaluated on the main environment, without creating and destroying

closure-environment and without multiple function calls per variable request.

9.2.2. Caching

During a game, there is a great probability that certain game mechanic elements are static over large

periods. This is unlikely in a First Person Shooter, where each Game Object which should be

processed is within the sphere of influence and therefore likely to be influenced by a player. An

omnipresence-based game like a Strategy Game will have to refresh a lot of objects per cycle, even if

they are doing nothing. Consider the function to receive the current hitpoints of a character as an

example. The calculation might get rather complex. Temporary effects like being close to a hero unit

or increasing the maximum hipoints, as well as damage received might affect the result. Yet, in the

vast majority of cases, a vessel is undamaged and temporary buffs are usually used in combat. These

buffs are not used during the rest of the game, which implies that these special effects are probably

static for large periods of time, too (perhaps until a new armor type is researched). The hitpoints

function also has a large probability to be called multiple times per cycle, not only for game

mechanics like the update function of a medic to scan if a unit to heal is nearby, but also for GUI

operations, such as filling a health bar.

A caching algorithm on a lambda level would be perfectly fitting for this scenario. This is a good

example for the special requirements game development requires. Implementing a caching

algorithm on lambdas for a generic Lisp runtime would be quite useless, as we have no idea of the

potential input parameters. It might go well for some lambdas, but implementing a cache for the

"max" lambda in the example above would be a waste of performance. In a game engine, we have

two conditions that make a cache table more attractive. First, a game engine calls the same base

functions - an Update() function - on Game Objects every cycle. It is therefore likely that a single

function is called often. Second, the maximum variety of scripts within the runtime is static as the

game is loaded. "Maximum variety of scripts" might sound a bit vague, but think of it as a certain

predictability of processing by taking the actual usage of a function into account. The "max" function

from above has no meaning, as it is just a function returning the maximum. We can't say much about

the potential arguments that it will receive, and therefore we can't really expect the usefulness of a

cache. A function that deals damage to a unit in a game has a meaning. Likewise we know a lot

about its potential arguments. For example, damage won't be negative. Furthermore, if we take a

look at all the other scripts, we could even produce a finite set of values (or value ranges if we take

variable damage into account) which could be passed to the respective lambda. Speaking of

probabilities, it is much more likely to gain a performance boost from caching a damage function,

than from caching a max function. This is a design pattern seen in many good and advanced game

engines. Features are not only analyzed by their function, but also by their meaning. This is in order

to get the best result for the in-game situation, either by adjusting the implementation, the function,

or the meaning for better performance. I often summarize this behavior with the "Content versus

Technology" principle.

Let’s go back to the caching now. Would it be possible to implement generic caching on any lambda?

Probably not. Just consider a lambda accessing a global variable. The global variable could change

and alter the results, which would invalidate the caching result (given the cache is done on the

arguments). This means that efficient caching is only possible on pure-lambdas, where global

64

variables are forbidden and no further lambdas with side-effects are called (consider a hardcoded

function that accesses a non-script element, like receiving the transformation of a Game Object). In

reality, almost no lambda in an in-game script would match these requirements. If they do, they are

so simple that caching would probably be slower than evaluating the result. It should not be

forgotten that checking for a cache result and receiving it from the cache table takes time, too.

In order to deploy caching, the chance of a lambda being cacheable should be increased. Reducing

the number of side-effect function calls is neither possible, nor recommendable. The scripting can't

be disconnected from the non-script elements, as it is part of the in-game universe. If it does not

communicate with the rest of the universe, it could be left out entirely. Instead, the scripting

language should be integrated into the engine as closely as possible, which means that the side-

effect calls should mirror the actual Game Object APIs tightly. This allows one to use the best

alternative for a function in the scripting language to receive a maximum of performance. Consider a

weapon firing. A missile launcher might check if there is at least a certain distance of free space

ahead of it, in order to avoid damaging the unit doing the firing with the missile’s explosion. To do

so, the missile launcher could do a ray cast. The physics - or a spatial container - generally offers

multiple ray casts for different situations. One might only return the first result found and terminate

right after, just to check if there is anything intersecting the ray, another one might accept a

maximum or minimum distance to greatly narrow down the number of checks required. If the

scripting language does not mirror this API, but only offers a generic ray cast that probably accesses

the default ray cast implementation - returning all objects intersecting the ray - a lot of potential

performance increase by using a better fitting ray cast is lost. A ray cast with a maximum range

returning and aborting after a first intersection would be a much better fitting choice.

For LScript, I tried a different approach with the following rule: if a lambda does not call a side-effect

function (denoted with a "!" just as in Lisp) it is a pure-lambda. In other words, there are no global

variables as everything is passed as an argument. Now this sounds like the complete Armageddon of

usability. Having a programmer pass everything required by the lambda (and all lambdas that the

lambda might call itself) is of course impracticable. In a commercial project, this would probably lead

to more service calls from the scripting teams than giving them access to the source code.

To solve this issue, I introduced a new field to the lambdas. In addition to the lambda-body and its

arguments, now a lambda also contains a list of required variables, or just requirements to make it

shorter. Once a lambda is evaluated, it asks the environment it is evaluated in for all the arguments,

just as a conventional lambda would. In addition, it will also ask the environment for all its

requirements. The requirements are a list of all global variables used within the lambda itself and all

lambdas it might call. This allows a developer to write lambdas just like in any other functional

language and use variables freely, but from a lambda's perspective, its result still only depends on its

arguments and requirements and therefore it is a pure-lambda. Caching can now be used on the

arguments and requirements. Let's take a look at an example. The following lambda is used in the

GUI scripts of a Telesto demo. It is part of the OnClick event handler and checks if the GUI element

contains a proper script identification and calls a guiClick lambda. Don't get confused by the "#-1"

notation. In LScript, each number is a float. Array accesses are realized via identifiers, which are

denoted by a "#" and are similar to integers. The same result could be achieved by using numbers,

but differing between numbers and identifiers allows some more performance adjustments for

runtime evaluation with an acceptable usability loss. Calling array element #2 is still rather intuitive.

65

1 //Check if a GUI element contains a script ID and

2 //perform pre-event guiClick operations

3 Lambda(id, if not (id = #-1 or id = guiParent)

4 then guiClick(id))

So what are the requirements of this lambda. Obviously, it only contains a single argument, "id".

Once it is constructed, the lambda checks its body for all variable-type atoms and puts them into its

requirements list if they are not part of the arguments list. By doing so, the requirements list now

contains "guiParent". Now, the lambda checks if it calls other lambdas and copies their required

lists into their own, discarding duplicate entries. In this example, the requirements list of guiClick

would also be added.

Once this lambda is evaluated, it asks the environment for all arguments and requirements. From

this point forward, no future lambda call resulting from this initial one, will ever have to talk with the

environment again. All potential arguments and used variables are already present (except if a

lambda wants to set a variable to a new value - I will talk about this case shortly). This bears another

great benefit: the evaluation interaction with an environment is reduced to a single "flash" rather

than an ongoing "conversation", such as in conventional Lisp. This is particularly beneficial to locking

scenarios where multiple lambdas are evaluated on the same environment in different threads.

This pattern to enable caching requires overhead when a lambda is created, as its body has to be

traversed in order to construct the requirements set. In the scenario of a game, this is an acceptable

overhead, as most - if not all - lambdas are present in the script files and are constructed during load

time. If lambdas are created during runtime, this should always happen in reasonable numbers,

where the overall gain of performance through caching is greater than the loss of performance due

to constructing the requirements list. If a situation should arise where a lot of lambdas are created

during runtime, changing the design to reduce the number of dynamically created lambdas should

be considered. It's the nature of most performance improvements to make some assumptions on

the expected usage scenario. The reasons for my assumptions are based on the analysis of different

games. Yet, it is not possible to gain perfect performance in every situation. Although I can't imagine

a scenario where this might be required (perhaps a very context sensitive GUI, but on the other

hand, the GUI is always rather limited in its GUI object counts and therefore can't lead to too many

lambdas created in one cycle), if a usage scenario of a game involves many dynamically created

lambdas, caching via a requirements list might be a drawback rather than an improvement.

Let me now continue to the tricky part: !set. For those less familiar with Lisp, this refers to changing

the value of a variable. Considering the above example, what happens if the value of guiClick is

changed? This might result in a new requirements list for it and that would alter the requirements

list of the whole lambda. Indeed, if a variable is being changed, all lambdas of the same

environment, which include the changed variable in their requirements lists should be refreshed.

Likewise, if their requirements lists changed, a recursive refresh kicks off. This sounds like a lot of

overhead, but consider the following chart. All lambdas of an environment only have to be scanned

and adjusted if the change of the variable actually changed its requirements list. If the requirements

list vanishes as the lambda was replaced by an atomic value, it's a design decision whether to update

all lambdas or not. As long as variables cannot be deleted (they can't in Lisp), the worst thing that

66

could happen is that a lambda asks for a few values it won't need. The requirement lists of the new

and old values could also be analyzed, to identify if the new requirements list is a subset of the old

requirements list, but that's mere optimization.

 New value is atomic New value is a lambda

Old value was atomic No update required Update required

Old value was a lambda Update is optional Update required

I will supply another assumption here. In the vast majority of cases, variables which change their

value often are atoms (floats, strings, vectors, ..). This holds true for many game situations, such as

adjusting the damage of a weapon, the hitpoints of a unit and similar values. If more complex

mechanics are required to change repeatedly, like the damage characteristics of a spell in an MMOG,

the script should be kept static and configured via atomic variables. Let's consider a fireball spell

which deals variable damage depending on the type of an affected creature. In this situation,

damage dealt is a lambda rather than an atomic value. If these characteristics have to change often -

for example by making the fireball more deadly against humans, Orcs or Elves - the actual damage

script should be kept static, and a "BonusDamageCreatureType" and "BonusDamageModifier" field

should be added. These fields will serve as atomic configuration parameters for the damage script,

which will not invoke an iteration over the environment to update requirement lists. Game scripting

involves many performance considerations and this would be a good example. Nonetheless, this

pattern is rather intuitive and used by many games - like Fleet Operations - even if they do not use

this particular caching technique.

Now that we thought about how to deal with the consequences a !set might include, we should

think about how it can be used. Following the design principles we introduced so far, a lambda only

communicates with the environment at the moment the evaluation begins and all arguments and

requirements are received. If so, how can a !set be implemented which is nested in a lambda? A !set

requires access to the environment to change the value of a variable, after all. The answer is rather

pragmatic: LScript requires a !set to be the first statement. As long as only one !set is contained in a

lambda, this works out well. Consider a lambda that somewhere in its body sets a variable a, to 5.

This statement can be rewritten, so that the !set is the first statement. Line 1 would not be valid in

LScript, but the example is probably easier to understand without switching from Lisp to LScript and

vice versa.

1 Lambda(cond, if cond then !set a 5) //invalid statement

2 //can be rewritten into

3 !set a Lambda(cond, if cond then 5 else a)

There are two drawbacks of this method. The first is a rather uncommon way of formatting these

kinds of statements, especially for a developer which is used to procedural programming. A

functional programmer won't have many issues with this notation, as that's the way a return-value-

driven system works. This issue can be solved via an IDE, which could rearrange these statements in

the background automatically. The operations are not very complex, even for nested lambdas. The

67

second drawback of this method is that a variable might be "changed" to the same value it already

has. This produces a small overhead itself, but more important, if the value was a lambda, this might

result in an environment iteration to refresh requirement lists. This can be avoided by comparing the

requirement lists of the old and new value first, before starting the requirements update iteration.

Still, there might be statements with multiple !set operations nested in a lambda, which cannot be

transformed into valid statements in this way. To start with, Lisp usually avoids working with too

many global variables, so a clean Lisp code will already avoid this problem. If necessary, the only

option is to offer an API call, which will dispatch an asynchronous message to the Game Object (or

an equivalent structure which holds the environment, like a GUI object) and add an event handler

which performs the !set. This is of course an expensive overhead, but after getting used to functional

programming, it is not that difficult to write complex game mechanic scripts, which utilize !set rarely

and never use more than one !set per statement. The main issue is to break with procedural thinking

and move on to a return-value-oriented point of view.

Now that all these issues are settled, caching can be implemented. The only question remaining is

how to actually implement the caching. All arguments and requirements will have to be boiled down

into a unique (unique! hashing is not an option for game mechanics. We don't want to kill a player

due to an unexpected hashing match) ID, which can then be used to access a value of the cache

table. Many policies can be deployed here and the algorithms to generate the ID can be of varying

complexity. For LScript I implemented a rather pragmatic, but fast to process solution.

In LScript, only lambdas with less than 5 arguments or requirements are cached. This was a

reasonable number for me. The larger the number of arguments or requirements gets, the less likely

it is that all of them will be rather static in order to get a benefit from caching. Even if a lambda is

rather static, but receives more than 4 variables, it usually calls other lambdas to process the

complex task, which may then use caching on their own. This will just shift one level down. If less

than 5 variables are passed, their type is determined and a unique ID is created for each variable.

The IDs are then ordered and appended to receive the final caching ID. This is only valid if all

variables are atomic. As soon as one of them is a lambda, the caching is disabled. This avoids the

potentially complex traversing of lambda constructs to produce their ID. It is rather reasonable as

well, as a passed lambda is unlikely to be static in a well designed Lisp system, where configuration

variables are used.

Last but not least, the caching tables should not be implemented in the lambda itself, but at a global

position. To do so, a longer ID is created over the body of a lambda. If this ID creation is robust to

reordering of statements without changing the result, then it will allow multiple equal lambdas from

different environments to utilize the same caching, which is very useful in a game situation. For

example, in a real-time Strategy Game, where many identical tanks move through the field. All their

hitpoint functions are the same, but they will all be located in different environments - the

environments of their Game Objects.

Finally, to close this chapter about caching, complete caching is optional. If no statement is given at a

lambdas declaration, then the parser decides whether to use caching or not. This can follow many

policies, from a default value, up to a more complex analysis. Otherwise, the keywords cached and

uncached can be used to force the caching state of a lambda. There are also plans for a conditional

68

and reactive cache mechanism, but evaluation has to be done first, to determine whether the

processing overhead of conditional caching is worth the effort.

1 //part of the damage event handler, shortened

2 Cached Lambda(damage, damagetype, mitigation, ...)

The above example shows the declaration of a cached lambda with three passed arguments. One

requirements variable is used in the body, which is left out here. The function calculates the precise

damage dealt by a weapon to a certain target. It is quite likely that this function is called multiple

times with the exact same parameters. For instance, every time a unit of the same type is hit by the

same weapon. As the damage calculations can become rather complex, this is a rather easy way to

construct low-level optimization. It is recommendable to disable caching on certain functions. For

example, if they receive a location vector from the physics engine or a similar construct. A physics

controlled Game Object will never reach the exact same location in the game world ever again, so

caching is a waste of both performance and memory. At the end of the day, if not over-engineered

and used wisely, caching can be a powerful performance boost for omnipresence-based game

engines. The following figure contains benchmark results for different caching patterns.

 System A,
no caching

System A,
default caching as

described

System A,
forced caching on

everything

Idle Scenario ca. 1.8 Million
Cycles/s

ca. 1.8 Million
Cycles/s

ca. 1.7 Million
Cycles/s

RTS Space Battle ca. 1.0 Million
Cycles/s

ca. 1.4 Million
Cycles/s

ca. 820k
Cycles/s

MMOG Space Battle ca. 1.1 Million
Cycles/s

ca. 1.3 Million
Cycles/s

ca. 650k
Cycles/s

Massive "Message
Bombardment"

ca. 320k
Cycles/s

ca. 860k
Cycles/s

ca. 610k
Cycles/s

9.2.3. Variable Indexing

The first performance optimization for LScript was the indexing of variables. This was rather

implementation-driven. Besides a call to evaluation methods, the most used function calls in the Lisp

namespace - according to measurements made in a default test scenario - are calls to receive values

from an environment. I therefore chose this function for optimization to start with.

A straightforward implementation of a lisp environment is a .NET dictionary, a generic key-value-

store, which will hold a variable's name as the key and its value as the value. While the .NET

dictionaries are rather fast (implemented via hashsets), the good old array will always faster. This led

to the introduction of LScript header files (interesting how hated C++ constructs reappear once

performance optimization begins). Besides some management and meta information, the header

files contain a list of variables an environment may hold. This means that an LScript environment -

unlike a Lisp environment - cannot hold any variable, but only those which it offers. This is similar to

69

the public fields an object in an object-oriented language has. This might sound very limiting, but in

practice it’s no real limitation. Again, a game is not a dynamic console like a generic Lisp runtime. It is

a defined system and the scripting language is used to describe the system. A certain environment -

for example a Game Object - has a defined list of attributes per se and dynamic or temporary

variables are not stored in variables in a functional system, but passed as arguments. Consider the

indexing of variables as a tribute to object oriented programming in a functional language.

In the current build, the header files have to be written by hand. The first feature an LScript IDE will

probably offer is their auto generation. If the whole game scripting is developed in an IDE, then it is

possible to receive the precise list of variables used in an environment without having the user to

specify them. This will generate the illusion of conventional Lisp environments which may store any

variable. The following example shows a simple header file, described in LScript. The "@" statement

at the beginning of an LScript file describes the namespace (which header file this environment uses

for initialization) of a file. An environment using this exemplary header would start with "@test".

1 //test object for collision tests 1.2

2 @EnvironmentHeader

3 !set Namespace "test"

4 !set Attributes ["MaxHealth", "CurHealth"]

5 !set Init "testgame\h_testobject_init.lsc"

As all environments now know the number of variables they have to provide, their dictionaries can

be converted into arrays. To do so, all variables get indexed by the parser. All variable names like

"MaxHealth" are converted into identifiers by utilizing a global registry module, the Environment-

Manager. The EnvironmentManager will map the variables of a header on consecutive numbers. A

newly created environment will receive an EnvironmentBlueprint from the EnvironmentManager,

which contains the number of variables and an offset. Receiving a variable from the environment

now only takes two operations: subtracting the offset from the incoming identifier and performing a

direct array access at the resulting position. That helps speeding up the second-most-used operation

in the whole Lisp namespace.

On a side note, strings are converted into identifiers, too. They are also stored at the Environment-

Manager. This decision was not made due to performance consideration - string operations are

pretty fast in .NET - but to establish a central authority for localization. This feature is not added, yet,

but it's one of the higher priority tasks for one of the next major versions. Nothing is worse than

running through hundreds of script files to search for strings in order to put them into a localization

form. That's just what I had to do for Fleet Operations. That's nothing you are eager to do twice in a

lifetime.

9.3. Resource Manager
Every game requires content, and the content has to be accessed by the game universe or the

extractors. To do so, a game engine utilizes the same mapping an operation system would: it builds

up a file system. This is generally achieved by indexing resource files during the load-up phase of the

game engine and storing their absolute filepath in a hierarchical tree. A resource's file path - for

example to load a texture on the graphics card - can now be received via the path in the hierarchical

70

tree. This is often represented by either resource IDs, similar to IP addresses, or a resource-manager

filepath. The latter is definitely the more intuitive option for human use. Besides this basic

functionality, a resource manager is often responsible for processing the resources. This might

involve reading script files, loading and converting geometry for various usage scenarios (a physics

engine requires geometry in a different format than a renderer), transferring resources to the

graphics card and managing their unloading. In many engines, this leads to very large and hard to

maintain code blocks in the resource manager, as parsers and loaders tend to result in ugly code. It

is absolutely not uncommon to end up with a highly flexible engine with a lot of potential for

modularization, but having a bulky resource manager which has to know about every module in the

engine. In many cases, the resource manager becomes the true central node of an engine

architecture, where everything has to register first. This is neither a flexible nor a maintainable

solution. Developing an efficient - efficient in both performance and development - resource

manager is one of the most important early achievements a game developer should aim for.

Content tends to get large. Fleet Operations, for instance, consists of over 1 GB of just textures - in

compressed format. With that in mind, it becomes reasonable to not load all the resources during

the game's load-up period, but load them on the fly as required. This avoids loading unnecessary

resources, too. If a player enjoys a round of a real-time Strategy Game which would offer three

different factions, but only two are present in this specific game round, all the models and textures

of the third are not required. For this reason, all games with rich content load at least their most

heavy-weight resources like textures and models during a game. Again, shooters and similar genres

might be an exception here, as they have rather simple content requirements. Besides the current

map, most resources are always required, like the weapons, player models or GUI components.

Loading heavy-weight resources like textures on the fly will result in unacceptable game stuttering if

the resources are being loaded synchronously. Dumping a texture onto the graphics card can easily

take a second. State of the art games are therefore asynchronous on-demand resource managers.

The Telesto resource manager loads files asynchronously and on-demand, but it is also distributed,

meaning that there is not a central authority to oversee the resource loading and unloading process.

This is achieved via exchange formats and descriptions. The main resource manager instance running

in the Core just creates the file system upon startup and loads all script files. It neither loads nor

unloads heavy-weight resources. Instead, these resources are described in short script files (a

texture description for example might just contain the filename of the texture, but also extra

information like animation) or are completely composed of script (models are stored in LScript, for

example). If an in-game entity invokes resource loading, the description is passed to the external

module which requires the resource. For example, this could be a new game entity, which tells the

renderer to be available for future rendering. This involves loading a resource like the texture. The

texture description is passed to the renderer. The renderer now reads the description and requests

the absolute file name of the actual texture image from the resource manager. The only thing the

resource manager knows about the texture file is its file name. It never read the texture, so it returns

the absolute path - the location of the texture on the hard drive - to the renderer. With this absolute

path, the renderer now invokes its own resource loading, as every external device features its own

resource management instance. It would also be possible to share the same resource management

instance between multiple modules. However, that's a rather rare case, usually only happening

during development, where multiple renderers, for instance, are connected at the same time. The

71

following diagram shows an example of the texture loading process, utilizing an external

asynchronous extractor, the Renderer, which uses a Renderer Worker to do the asynchronous

resource loading. More about extractors in a later chapter.

Figure 13: Texture loading

This architecture has some unique points worth talking about. The first obvious change from a

common resource manager is the fact that the resources are not handled by a central resource

manager node, but by the external modules themselves. This comes with the drawback that every

external device (or every group of external devices if multiple externals share one resource pool) has

to implement the resource loading itself. In some cases, this will be a development overhead.

However, there are some important benefits, too. The external modules now supervise their

resources and do not have to follow a generic resource manager API. This allows a lot of

performance tuning. The renderer does not need to store its resources in a file-path based

hierarchy. A simple collection might be sufficient or just referencing them in the Render Objects. The

external devices are also able to optimize the actual loading process precisely to their needs. The

renderer might just require a "loading complete" message once the loading is done, while another

external device might require more information during the loading process, for example if streaming

is involved, like what sound engines do. Another optimization is that not all external modules require

asynchronous loading. An AI will probably just work on unit descriptions, and they are plain script

files which are already available either way and don't require asynchronous loading. The external

modules may now also decide whether or not to unload resources, and if so, under which

conditions. The unload-API in many resource managers is the dirtiest block of code of the whole

engine, ranging from reference counting through periodic checks. An unload mechanism tailored to

the needs of one specific module will be much more efficient, or at least easier to maintain.

The bottom line is that the distributed file manager of Telesto allows one to adapt the functionality

of managing resources closely to the needs of the different modules to gain performance or

maintainability bonuses, at the price of additional implementations. It also increases the

72

modularization of the whole engine, as the Resource Manager does not have to know anything

about the external modules. It's the job of the external modules to read and understand the

descriptions or exchange formats. They serve as an interface an external module will have to

implement in order to work with resources. In my opinion that's a much cleaner way to implement

resource managing, even if a certain implementation overhead - and perhaps even a small

performance overhead to read the descriptions - is involved. It follows the divide-and-conquer

principle and allows one to connect or disconnect external devices with a single line of code (this

was my mantra for Telesto's modularization). At the end of the day, it's a design decision. There are

countless and very popular and successful titles out there, utilizing a central resource management,

like Star Trek: Armada II (19). I decided to go for a distributed resource management, as

maintainability is king if only working as one person on a large software project. Also, it allows me to

implement the resource management features one at a time, while a central resource manager

would have to offer a lot more functionality to start with.

The description and exchange formats in Telesto are stored in a universal resource container format.

This is just a simple LScript file using the Resource namespace, which offers an array of content

fields to store data. This might not be the most human readable form, as a user has to know what

kind of data is expected in the different content fields for a certain format. Yet an IDE for future

development will solve this issue. The following example shows the description of an animated

explosion texture which uses UV offsets to jump from frame to frame (all frames of the animated

texture are stored in the same file).

1 @Resource

2 !set version 1

3 !set format #3

4 !set content0 "textures\explosion01.png"

5 !set content1 ["animation\explosionU.lsc",

6 "animation\explosionV.lsc"]

7 !set content2 [1 / 6, 1 / 6]

The first two variables (set in line 2 and 3) are straightforward. The version variable allows

specification of the description format, in case the specifications will change in future builds of

Telesto. The format field is optional and defines which features the resource offers. In the context of

a texture description, format three is a harddrive-stored image file with animation controllers and

scaling factors for the U and V coordinates of the mapping. Content0, content1 and content2 are the

actual resource description, containing the texture path, the animation controllers and the scaling

factors.

Geometry data in Telesto is an example for an exchange format, in contrast to the descriptions

above. Exchange formats use the same generic resource container as descriptions, but they do not

reference other resource files, like the texture file in this example. Instead, the whole geometry is

stored in LScript format, generated by a 3Ds Max (58) plug-in from modeled meshes. Geometry data

tends to generate very large text files, easily exceeding a megabyte. Parsing these files with the

standard LScript parser would quite literally take forever. To solve this issue, a binary format was

introduced with a lightweight compiler and binary stream reader. This feature was later extended

73

during development to allow saving parts or the complete Lisp runtime system, which could be used

for saved games or saving character data on an MMOG server. However, these features are untested

and not finally implemented yet.

9.4. Extractors
External modules in Telesto are split into two groups: read-only extractors and externals, which

include the flow of information from the external to Telesto. Both read and write operations require

different handling. The read-only extractors are integrated via an API in the Core and are maintained

by the cycles. For the externals there is no generic pattern. They require a new instance in the

architecture, which could be implemented as a Causality Brush. They might also use an existing

structure, like the AI, which would use the same input handling as a player connected via LAN. This

chapter will take a look at the extractors, which collect information of the in-game universe and do

something with them, without actually influencing the in-game universe. The renderer is a good

example. It simply presents the current universe state to the user. Many externals which write back

information into the game universe, but also require gathering information include extractors, too.

The AI, for example, has to gather the positions of its units on the map in a real-time Strategy Game.

This aspect is implemented as an extractor.

Telesto offers two APIs for extractors: synchronous and asynchronous extractors. A synchronous

extractor is called by the cycle runtime in the synchronous window of a Brush Cycle along with the

Causality Brushes. This makes sure that the extractor only accesses objects in one iteration, which

are of the same time. An asynchronous extractor, in contrast, is started and stopped by the cycle

runtime and extracts information in an ongoing loop, completely independent of the cycles.

Gathering the positions, hitpoints and effects on game entities for the player-level artificial

intelligence is a good example of a synchronous extractor. Building the AI world requires resolving

some causal relations, which requires that no Game Object has already been updated by the next

cycle. Consider a tank, for example, which is currently aiming at a hostile barracks. If the barracks

Game Object is already destroyed, the AI will not be able to make sense of it. The AI must therefore

use a synchronous read connection with the game universe.

The renderer, on the other hand, just updates its Render Objects with the transformations of their

respective Game Object. If a Render Object is linked to a Game Object which no longer exists, it will

not update its transformations and will receive a message to destroy the Render Object shortly. The

renderer requires no causal dependencies. It doesn't matter whether the tank or the barracks are

drawn at the same time. The time differences will be too small for a human player to notice either

way. The renderer can therefore use an asynchronous extractor, which completely disconnects the

framerate from the cyclesrate. If the renderer slows, the cycles can still continue as usual. If the

cycles slow, the renderer can still draw fluent movement due to prediction. Even if the prediction

cycles are slow, the renderer will still draw at an unaffected framerate, but there won't be any

movement of course.

9.5. Input handling
As a goal of Telesto is to implement a synchrony via reconstruction pattern, it is important to

carefully design the input handling. The most advanced reconstruction and synchrony architectures

won't help if the input does not arrive in time. The Telesto architecture splits input handling into

74

three major parts. These are the actual recording of input events, their processing, and the

application of the invoked changes. The first two steps are part of the Core, while the changes are

drawn via a causality brush as described in a later chapter.

To begin with, the hardware events have to be received. The module responsible for this process is

the LocalInput. The LocalInput is, just like the renderer, very implementation dependant. If a game

design dictates OpenGL (62), a different implementation of input handling has to be used, compared

to a DirectX (52) implementation, where DirectInput is available. As the LocalInput is a write-only

device (it does not receive any information from the in-game universe, besides management

information like the current in-game time), it is just connected by implementing the ILocalInput

interface and does not require a complex message system on its own. Its job is just to receive all

hardware device events, gather them in buffers, process them and send them to the next (and most

important) module in the input handling chain: the Relay. Before we continue, there is one point of

the LocalInput I want to talk about. The LocalInput will, of course, not transfer the plain hardware

events. They are first sent over to the GUI, a module located in the Foundation. This is done to

prevent transferring unnecessary events over the network, such as clicking somewhere where no

action would be triggered. The GUI will respond with a GUIEvent to the LocalInput, which will be

stored in its buffer and transferred to the Relay. The GUI component should not be confused with

the user interface. The user interface in Telesto is split into two modules, the GUI and the GUI Logic.

The GUI is responsible for mapping hardware events like a mouse click or a pressed keyboard button

on interface events. This involves a framework to place GUI elements like buttons on the screen or

the user-configured key mapping. This two-layer abstraction is very common for GUI development,

separating display or input handling from the functionality of a button, as it allows a user to

configure controls without having other clients to know about them. Telesto would even allow one

to have independent GUI instances for each player, opening support for a customizable GUI-Addon

system like in World of Warcraft (2), which is one of the key reasons the game is still so famous. The

GUI Logic component, finally, implements the event handlers for the GUIEvents and fires common

game events on Game Objects. The GUI Logic could be seen as the API for interface development.

More about the user interface in the Foundation chapter.

The Relay is the key node for multiplayer coordination. The Relay receives GUIEvents from

LocalInput or ExternalInput instances. The ExternalInput is just a module receiving and buffering

messages sent over the network. For every player (human or AI) present in the game, a unique

LocalInput or ExternalInput instance is created (note that it would also be possible to have multiple

LocalInput instances on the same machine, if split-screen game modes are desired). They are then

registered at the Relay and are each assigned to a unique input layer. All LocalInput and

ExternalInput instances need to send their batch of GUIEvents, along with the timestamp for the

Safe Cycle they are meant for, before the respective Safe Cycle is actually executed. All GUIEvents of

a Safe Cycle are therefore embedded in an envelope format, called the GUIEvent Batch. Even if no

GUIEvents took place, an empty batch has to be transferred. This is required to assure that all

remaining players are still in synchrony if a player drops out of the game - a recommended scenario

for an MMOG. Consider three players: A,B and C. Player B now loses connection to player A, but his

or her batch of GUIEvents arrived at player C and was executed. Once player B is kicked, player A and

C might differ over multiple cycles and reconstruction might be difficult. In Telesto, the clients will

notice a delayed or missing player immediately once a Safe Cycle is missed. There is also an option to

75

have all clients acknowledge that they are ready to proceed with a Safe Cycle before applying it. If

this option is chosen, the Safe Cycle window is narrowed down a bit, as additional communication

overhead is required. The following diagram shows an overview of a generic input handling in

Telesto. All actions after the Relay are only executed in the synchronized window in a Safe Cycle.

Figure 14: Input Handling

Obviously, there is no server mentioned in the description above. In fact, Telesto utilizes a peer-to-

peer multiplayer mode. Only some management functions will require a unique entity in the in-

game multiverse, the random generator for example. To handle these issues, one of the clients is

declared to be a host (could just be the player who started the game round for example). Besides

the default input handling above, the host also does some management operations, like assigning

the AIs to the fastest clients, kicking clients out of the game, or distributing random tables. The host

can be changed at any time. For an MMOG, it might sound strange to use a peer-to-peer system.

Yet, there are several interesting models simulating a vast game world without utilizing highly

expensive server hardware. A good example for these techniques is Guild Wars (13), which actually

fakes an MMOG world by moving the lobby into the game in the form of cities and outposts. Going

into detail about this would exceed the scope of this paper. At the bottom line, it is possible to

implement an MMOG based on peer-to-peer multiplayer.

9.6. Containers
The structure that game entities (or their components in Telesto) are stored in has a great impact on

performance. The Core holds two important collections of entity components: the

GameObjectContainer and the PhysicsObjectContainer. As mentioned in part 1 of this document, it

is a recommended technique to implement containers fitting the actual structure of the content to

optimize queries. For a Strategy Game or an MMOG, this would be a spatial container for Physics

Objects and a logical container for Game Objects, to speed up the most common queries. In addition

to this generic purpose, these two containers also serve as a hub to start the respective simulation

76

and update processes. They are therefore also connected to the Thread Pool to dispatch the physics

simulation and Game Object update jobs.

77

10. Foundation
The Telesto Foundation is the layer of Telesto which is changed most during game development, as

it contains all the game-relevant modules to implement the fundamentals of the gameplay, physics

and usability. Most precise implementations of the modules contained in this layer are very

dependent on the chosen genre. This chapter will cover the most important modules contained in

the Foundation and give some examples for a real-time Strategy Game or MMOG. The following

figure shows the three basic sectors the Foundation consists of and their most remarkable

functionality. Going into detail for all functions of the respective modules would exceed the scope of

this document, as a lot of management and optimizations is involved in each of them. I will go into

more detail where appropriate without messing too much with an actual implementation.

Figure 15: Telesto Foundation Overview (Functionality)

10.1. Entities
One of the most defining decisions during the development of game engine architecture is definitely

the decision on how to store and manage the information which represents in-game entities. This

structure is more commonly known as Game Objects, like we talked about in part 1 of this

document. Telesto uses a shared-memory Game Object model by utilizing LScript environments and

their atoms as shared-memory blocks. In order to achieve potential for parallelization, Telesto

constructs in-game entities from several components. This allows one to use parallelization-per-

function, as all components are designed to be processed without needing any information from

other functional domains. The core component is the Game Object itself, which holds an

environment responsible for processing the game mechanics. A Game Object might also contain a

Physics Object, which serves as an entity for the physics simulation. The Render Objects contain

information on how to draw the entities, but they are not stored at the Game Objects, but are kept

in the renderer. The following chapter will deal with the special issues and opportunities of Telesto's

Game Object model.

The Game Object acts as a central representation for an universe entity. It stores an ID-reference to

a Physics Object - if present - but also holds its own spatial state. This is because there can be spatial

objects which are not simulated by the physics engine. For example, consider floating GUI elements,

such as arrows or special effects like explosions. The Game Object also manages message receipt

and their event handlers. Besides some basic management functions, all relevant API calls are

wrapped in messages, to assure a completely asynchronous communication with the Game Objects.

This is important, as the messages are not executed upon arrival. All state changes are controlled

78

and executed by the so-called Causality Brushes, in order to assure multiplayer synchrony. Causality

Brushes exploit the functional independency of the several Game Object components to perform a

high performance causal analysis, or at least causal ordering.

The picture behind the Causality Brushes is essentially that of faking a painting. A pure color analysis

on the picture would just lead to a shallow copy. That is because only the result of a long process

chain is observed and important side effects are lost - like the subsurface scattering from multiple

layers of color, which brings the real "life" to a piece of art. A good fake includes taking a close look

at the technique the picture was painted with and drawing all colors on a certain region in the same

order as in the original. That's the idea behind Causality Brushes, too. They don't try to transfer a

certain universe state, but they recreate the complete process where the final state evolved from

and control this recreation in order to achieve synchrony. A Causality Brush performs actions of a

specific "functional domain" - for example the spawning of objects or their destruction. To do so, it

receives job tasks while game mechanics or physics simulations are being processed. In the example

of spawning an object, this could just be a constructor lambda. Causality Brushes are then executed

in a defined order. The order does not have to be static, as it can be influenced by Causality Brushes,

but the order of execution must be the same on all clients of the in-game multiverse. In other words,

as long as all Causality Brushes are executed in the same order as when they received the same,

unsorted set of messages, all clients will produce the same final universe state.

As a side note, the Causality Brush pattern is developed from a relatively common architectural

principle: the cycle report. This pattern is often utilized in engines of smaller scale. All Game Objects

are executed in parallel, but changes are not directly written back on the Game Objects. Instead they

are written in a report of changes, the cycle report. Once a cycle is complete, the cycle report can

directly be transferred to or compared with other clients, in order to establish a simple synchrony

pattern. The cycle report approach is popular for its simple implementation and its capability for

multi-threading and synchrony. For a commercial-scale game engine this approach is not suited due

to performance issues and limited synchrony optimization for complex causal chains.

We will soon take a closer look at a Causality Brush example. However, before this I want to answer

some important questions about them. During development, the question arises about which

functions can be processed on a Game Object directly and which have to be applied via a Causality

Brush. Generally, all functions that involve a causal chain should be extracted into a Causality Brush.

As a rule of thumb, all actions that require access to an external entity should be moved away from

direct processing. As long as an entity only changes its internal state, no causal processing has to be

done, as it is independent from other entities either way and can be processed at any time and in

parallel. Only if actions require information from another entity - or invoke events on entities - they

are part of causal chains and bear the potential of asynchrony if processed in changing orders. As

this was rather abstract, let me visualize the difference using an example. Consider the native

regeneration rate of a starship's shields. They always recharge at a constant rate. All starship Game

Objects may increase their shield strength in parallel, as it is unaffected by any other Game Object.

This process does not have to be extracted as a Causality Brush. However, subtracting shield hit

points always has a causal dependency, for example, being hit by a laser beam. This process is the

result of some external call, like one Game Object telling another one to receive shield damage. This

process can no longer be executed at any time, because - given the shields are at their maximum - it

79

will end at a different resulting shield power if the damage was dealt before shield regeneration was

accounted for or afterwards.

Now that a set of potential functions is identified that should be handled by Causality Brushes, it has

to be determined how many Causality Brushes are required and what each brush should process. To

do so, it is important to precisely define the requirements a Causality Brush has in regard to the

functional domain it covers. The following table summarizes these requirements.

Causal Independency The result a Causality Brush processes on each queued entity has to be
independent from the time of execution. This means that the actions a
single Causality Brush performs should be completely parallelizable. This
constraint is required to assure that a Causality Brush is actually the lowest
level of a causal atom. It would of course be possible to execute causal
events within a single Causality Brush, but how should the Causality Brush
resolve these chains? It would have to use Causal Subbrushes itself or other
mechanisms. That's not an efficient solution.

Unordered Queue The order in which entities are queued for processing at the Causality Brush
has to have no influence on the result. This is an obvious requirement, as
different clients won't perform their initial game mechanic updates in the
same order (for example if the machines offer a different number of
hardware threads).

No "unbrushed"
side effects

The processing of a Causality Brush might produce effects on entities which
are not within the input queue. If so, the only way a Causality Brush may
execute these side effects is to queue the entities at another Causality
Brush. This is important to assure that no hidden side effects are produced
by using an external entity, as some kind of storage container to transfer
causality outside of the Causality Brush system. This could violate the causal
independency requirement. Telesto allows one to queue entities at
Causality Brushes which were already executed in the current cycle. Cross-
cycle causality blurring is allowed.

A simple example for a Causality Brush is the SpawnBrush. Whenever a new Game Object has to be

created, a message at the SpawnBrush is dispatched with the Game Object description LScript file

path as a reference, as well as optional spatial information or arguments to handle, over to the

LScript environment constructor. Once the SpawnBrush is executed, it iterates over its complete

queue and spawns the new Game Objects according to the description file, which might also cause

the spawning of Physics Objects or Render Objects. The SpawnBrush also features a callback

mechanism, which allows echoing the IDs of created entities back to the environment which

requested the spawning of the Game Object. The SpawnBrush fulfills all the requirements listed

above. The spawning of an entity is completely independent from the spawning of other Game

Objects. If two spatial objects should spawn at the same location, the physics will detect the collision

during its next simulation phase and might queue a collision at the PhysicsBrush, but the

SpawnBrush itself does not care about that. This fulfills the requirement of causal independency.

With that in mind, the SpawnBrush does not care about the order in which constructors are queued.

The SpawnBrush is executed during the synchronous window within a Brush Cycle, when neither

80

physics nor game mechanics simulations are running. There is thus no difference as to which Game

Object has been spawned first. Herein the unordered queued requirement is fulfilled. Finally, a

callback will affect an existing Game Object. Yet, the SpawnBrush does not alter the environment

directly, but sends it a Callback message, which is handled by a separate Causality Brush. The side

effects requirement is correctly fulfilled, too.

The SpawnBrush is a good, but rather simple example. A creative reader should easily be able to

think of much trickier situations, especially for game mechanics. A first step to a fast and efficient

solution is creating a MessageBrush which will handle all messages sent between Game Objects. At

the end of the game mechanics simulation, a large queue of messages will have been gathered. The

messages should now be passed on to the Thread Pool for processing, which will probably result in

new messages gathering at the MessageBrush. The process is continued until either the queue is

empty or a maximum of iterations is reached. This very basic MessageBrush already does a good job

and could be deployed for a commercial game engine. In order to optimize the usage of the Thread

Pool and to utilize causal ordering, Telesto filters the incoming messages into several categories and

processes them using different brushes. Examples are the CallbackBrush or the DamageBrush. This

can be done by just filtering on specific message IDs. This allows grouping messages of similar

expected processing time (like the DamageBrush does) to always have a job at hand for an idling

Thread Pool worker.

The Causality Brushes have proven to be a powerful asset of Telesto. They offer good performance

and the synchrony-via-reconstruction method offers good network bandwidth usage. Similar

concepts are already utilized in game engines. For example, in the simpler form of the cycle report as

mentioned above, or in slightly different forms for behavior patterns or as mergers, where central

nodes are used to handle causal conflicts, such as having the player want to move through a wall and

the physics denying said action. These causal conflicts are solved in Telesto automatically through

the order of execution of the Causality Brushes. If the PhysicsBrush is executed last, the physics will

always have priority over player actions. In more complex scenarios, a Causality Brush may also send

a management action to another brush, requesting to drop an item from its queue. The Causality

Brushes build up the functionality required for a synchrony-via-reconstruction multiplayer pattern. If

they cause an asynchronous final state due to a wrong implementation, the whole multiplayer mode

will fall apart. Yet, due to the very modular concept of implementing different Causality Brushes for

different "functional domains", they are quite efficient to debug and this separation keeps the single

brushes rather simple and maintainable. Yet again, they are a tribute to developing a whole engine

as a single person. However this will always be an efficient concept in a commercial product too, as

multiple developers can be responsible for separate brushes, which reduces the communication

overhead that delays so many software projects.

10.1.1. Multiplayer synchrony-via-reconstruction

The choice for a reconstruction multiplayer was challenging and changed a lot of the initial

architecture plan, but in the end it was worth it. There is very little literature on multiplayer,

basically because most games do well with just transferring state changes. Only Strategy Games and

MMOGs, which both suffer from large Game Object counts and an omnipresence-based gameplay

(from the view of an MMOG server, the game is actually omnipresence-based, as there are countless

players active, similar to the units of an real-time Strategy Game). Therefore a commercial example

for reconstructing multiplayer is StarCraft (5), which is known to even be playable on 56k modems.

81

The following table shows some testing results of a Telesto demo running on a network pool of eight

machines, a common player count for real-time Strategy Games. The TCP/IP implementation used in

this demo was neither optimized nor perfect, so even more bandwidth optimization is possible. Yet

the upload and download rates are already rather satisfying. The demo scene used was a generic

game situation with 250 Game Objects active. The GUI was ignored as the Test scenario generated

direct GUIEvents. APM stands for actions per minute, a common ratio to measure activity (or "skill")

in the real-time-strategy scene. A "pro-gamer's" APM is often around 150 with peaks of about 350,

while South-Korean StarCraft players range around 400 APM on a regular basis with peaks over 500.

The kilobits were measured at the Relay, counting the size of TCP/IP packages. Some additional

networking overhead might occur, but this should not change the result significantly. The numbers

are not final, but can be seen as expectations of what a synchrony-via-reconstruction engine might

offer.

 Average Upload per Client Average Download per Client

8 Clients, all idling: 0 APM ca. 1.10 kb/s ca. 1.12 kb/s

8 Clients, 100 APM ca. 1.42 kb/s ca. 1.76 kb/s

8 Clients, 250 APM ca. 1.98 kb/s ca. 2.04 kb/s

8 Clients, 500 APM ca. 3.22 kb/s ca. 3.38 kb/s

The current plans for the MMOG based on the Telesto architecture will also increase the average

upload slightly, as it requires having an observer-client in the game, which receives information from

all players in the game and sends important information like gaining experience or looting items to

the server. In the above chart are some numbers to compare the results. Numbers without source

reference are taken from the official documentation, the user manual or my own tests. Precise

results depend - in most architectures - on the chosen engine or game genre. This was especially

visible in Aion (12), where the download rate greatly varies from region to region, depending on the

player density. The speeds for Counter-Strike represent a Counter-Strike dedicated server with 16

player slots used. The built-in voice-over IP of World of Warcraft was not taken into account and was

disabled. Diablo II was also measured with the maximum of eight players present.

 Average Upload per Client Average Download per Client

World of Warcraft (2) 5-15 kb/s (63) 5-15 kb/s (63)

Diablo II (64) 10 kb/s 10 kb/s

Aion (12) 8 kb/s 20-100 kb/s

Counter Strike (65) 4,5 kb/s (66) 4,5 kb/s (66)

Besides bandwidth usage, the latency is an important point to look at for multiplayer

implementations. Yet, the latency of Telesto is fixed by defining the length of the Safe Cycles. The

above example was tested in a LAN and the Safe Cycles distance was 50ms, which leads to a

maximum latency of clients under 50 ms, as otherwise the engine would start waiting for them.

82

Online games might of course use longer Safe Cycle distances. The next build of Telesto will also

include functionality to allow different Safe Cycle resolutions per connected player. With a Safe Cycle

distance of 50ms, a player with a 30ms could arrive on time on every cycle, while a player with a 150

ms ping will only be expected to arrive at every fourth cycle - which will slow down the games

reaction on his or her input, but that's the price a slow ping demands.

10.2. Physics
For a long time, the graphics were the most important sales-factor for games, besides the actual

gameplay of course. In the last years, the graphics quality and renderer content complexity reached

such a high level that a further increase in quality was no longer perceptible enough to act as a

unique selling point. That's when suddenly a lot of research was put into physics engines and many

of the modern stand-alone physics solutions were born. As already mentioned in part 1 of this

document, a physics engine consists of four important features: the dynamics simulation, the

collision detection, the collision analysis and the collision response.

Usually, one will not attempt to implement a physics engine on its own. They are probably - besides

sound engines - the most common third party software in modern game engines. A physics engine

involves a lot of low-level optimization, subtle mathematical models and algorithms and a fast

runtime. It would take a well trained and experienced development team to challenge the feature

list and performance of the current physics engines, which all required several years of development

to get so far. Time no commercial company would like to invest. For Telesto, my goal was to

implement an engine for space-based real-time Strategy Games and MMOGs. This setting - space -

bears a few characteristics for a physics engine that encouraged me to implement one from scratch.

For a space simulation, the probability of collision is much lower compared to a planetary game,

where there are always countless collisions just from objects lying around. This reduces the pressure

on performance, especially for the very difficult "rest problem" where two Physics Objects lie on

each other. The space setting can also be solved quite well with a pure rigid-body simulation, as

neither soft-bodies nor cloth simulations or fluid simulations are required.

Still, the physics engine of Telesto is one of its most complex modules. I decided to implement a

Newtonian rigid-body simulation. The benefit of creating the physics engine from scratch is that it

was possible to closely tailor it into the rest of the Telesto architecture. All third party physics

engines (I took a look at PhysX (15), Havoc (41) and ODE (42)) did not support my API and would

have required at least one additional wrapper layer to run their own simulation either way and are

only accessible via query statements. The Telesto physics engine is now directly able to deploy it's

simulations on the shared Thread Pool. This chapter will cover the concepts and the current

implementation of the Telesto physics engine.

10.2.1. Dynamics

The first thing to start with when developing a physics engine is the movement of objects. Telesto

utilizes forces and torques to express the movement characteristics of an object, so it has to deal

with the dynamics of entities. The mathematical background for dynamics is well-known. Many

physical models, for example bodies falling down under the influence of gravity, are commonly

described as analytic models, like the following example.

83

Analytic models are very handy solutions, as they allow one to get the state of an object at any valid

point of time by just inserting the requested time and supplying the start state and , as well as

certain constants describing the system, like in this well-known example. However, a game engine

can't hope to find an analytic solution for their state transformations, as real random is involved -

the user input. A physics engine therefore utilizes numerical models, like the following.

These models calculate a future state as a function of the current state and its time derivatives.

Intuitively, this is just what a run-time does. It iterates over objects in certain intervals and updates

the states based on the old state and the elapsed time, like a multiplying velocity with the elapsed

time and adding the result to the current location to receive the next location. This mathematical

background is of course true for game mechanics, too. Yet, a developer usually does not perceive

lambdas or blocks of a scripting language as a scientific model, while a physics engine is of course

very closely linked to the mathematical ideas behind the systems, like Newtonian Mechanics in this

case.

So what are the requirements the game engine has on its physics - or more precisely dynamics -

simulation? At the end of the day, besides obvious performance requirements, the game engine

expects the physics to update the transformation of a Game Object. In other word, the results the

dynamics simulation has to produce are the translation and the orientation. The goal of the whole

dynamics simulation is therefore to calculate a translation vector and an orientation matrix - or a

more compact representation for orientation, like a quaternion. However, that it is an optimization

to save memory does not change the mathematics and ideas behind it.

In the years before physics engines were available, there were still moving objects in games. These

include floating platforms in Jump'n'Runs or missiles fired in the first shooters. Their movement was

expressed by translational and angular velocity vectors, which were just added to the current

location and orientation, after being scaled by the elapsed time. This very basic pattern to express

movement will of course not lead to a sufficient physics simulation. However, it is very fast to

process, and therefore that's exactly what a prediction cycle does. In order to achieve movement

without having to process a complete dynamics simulation, the resulting angular and translational

velocities are stored and utilized by the prediction cycles to approximate the movement of an object

between the Brush Cycles. The following diagram illustrates this process for translation, which is

easier to visualize. Orientation behaves exactly the same, just the mathematics behind it are slightly

different.

84

Figure 16: Prediction

The figure above shows a very zoomed-in situation on a very fast movement, to visualize the way a

physics prediction works. Slower movement will feature a higher Brush Cycle density and the

difference between the predicted next transformation and the actual next transformation becomes

much less significant. Yet, it is important to keep in mind that a prediction is just an approximation

based on static velocity of the last calculated state. So, this leaves us with the four important values

to produce in the dynamics simulation: The translation, the orientation, the translational velocity

and the angular velocity. The last things we need in order to set up the dynamics simulation are the

input variables. These are the forces and torques applied to an object. Everyone should recall

Newton's famous second law of motion.

This leads us to the final input variable that the system needs, the mass , as well as the

intermediate variable which will be calculated in each Brush Cycle, the acceleration . The linear

momentum does not appear in a dynamic simulation implementation, but is important for

collision response. Finally, forces can be applied at any point of an object, as an object can be seen

as a sum of points with individual masses, momentums and forces applying to them. Consider a fluid

simulation for example: the center of mass is introduced to simplify the dynamic analysis for rigid

bodies. This allows the simulation to treat all forces of an object as if they were acting on the center

of mass and by doing so, ignoring the point of their application altogether. This assumption, as well

as many others, is used in physics engines to produce a believable output at reasonable

performance. Unlike scientific simulations, a game does not care for correctness. The only two things

relevant are performance and "that it looks good". In this paper, I will not cover the complete

mathematical background of Newtonian Mechanics and rigid bodies, but will follow a very

implementation-driven approach, presenting the formulae as they would have to be implemented,

with the optimizations used by today's physics engines. Simplification and abstraction are key, not

only to achieve believable physics in reasonable time, but to simulate the whole in-game universe

altogether. For a more mathematical approach, which describes the basics of a physics engine

85

without optimizations and implementation notes, I can recommend the excellent paper series of

Chris Hecker (67). He describes an excellent 2D physics simulation with all mathematical background

information and also offers the ideas on how to upgrade it to 3D. A perfect base lecture for writing a

physics engine.


for further reading...

Physics, The Next Frontier
http://chrishecker.com/

However, let’s get back on topic. With the knowledge about forces and the simplification of the

center of mass, it is already possible to put all calculations together to do the processing which

happens to the translation of an object during a Brush Cycle.

86

Input:
The Forces

Numerous forces might apply to an object, ranging from the engines of a
starship to the gravity well of a planet. Forces describe an influence which
causes the body to undergo an acceleration.

Many physics engines differ between global forces, like the force caused by
a shockwave or the gravity well of a planet, and local forces, which are
transformed by the same transformation as the rigid body itself, such as the
force caused by the starship’s engines. Whether this is seen as a property of
a force or whether all forces are considered to be already correctly
transformed into world space before the physics simulation starts is a
design decision. Telesto uses the local force concept. Obviously, the
summed forces are only valid for the current Brush Cycle.

Prediction:
Linear Velocity

The acceleration is an intermediate result achieved by summing up all
forces and dividing it by the mass of the object. With the simplified
assumptions of a physics engine in mind, this is quite obvious.

The acceleration describes the change in velocity over time. The
acceleration is not stored in the Physics Objects. Like the summed forces,
the acceleration is only valid in the Brush Cycle it was calculated.

The velocity is the first Physics Object state which has to be stored for
prediction.

Output:
Position

The final result required to build the transformation matrix of the Physics
Object is the position of the rigid body.

Besides rotation, the above formulae simulate a realistic movement, but they are only valid in a no-

atmosphere environment, like space. There are various ways to simulate friction in an atmosphere.

Some physics engine map friction as an auto generated force following constraints. However, this

could lead to unexpected behavior, especially for very slow movement, as forces processed in a

game engine are not completely precise, but just float vectors with their known inaccuracy. This

could lead to an object almost reaching a complete stop to actually accelerate in the opposite

direction or jumping back and forth. An alternative way is to execute a formula directly on the

87

velocity, like dampening it by a certain percentage each cycle. Telesto supports both patterns and

the current demo uses a simple linear dampening of velocity to simulate the Star Trek (48)

movement behavior of vessels in space (which is actually a plane in an atmosphere, rather than a

real spaceship).

The angular dynamics are slightly more complex. The angular equivalent to force is the torque. The

torque can be seen as the influence a force applied on a point has on the rotation of a rigid

body. Obviously, the point of application matters for calculating the torque. Just pull your keyboard

on the upper left corner or pull it closer to the center of its mass and you will see different rotational

behaviors. Mathematically, torque is expressed as follows.

Just as for translation, the angular quantities are measured at the center of mass, instead of all

points of a body. For the angular formulae I will not use the angular velocity to start with, but the

angular momentum at the center of mass. This can be received from the torques directly, as the

torque is - just like for the linear situation above - the time derivative of the angular momentum .

Now the question remains as to how to receive the orientation from the angular momentum for

both prediction and Brush Cycle processing. The first thing required for a believable rotation

behavior is a description of the way an object rotates, very similar to how the mass of an object

describes the way it moves for linear dynamics. Consider driving an empty car and a car with its

trunk filled with something heavy, like a weekly supply of Cola. If you buy enough, the behavior of

the turning car will change. This is described by the inertia tensor matrix . That's why I avoid

working with angular momentum until the very last moment. This avoids messing around with the

inertia tensor early on, as it is a matrix compared to a scalar for linear dynamics, which tends to get a

little nasty for both my brain and float accuracy. There are algorithms to calculate the inertia tensor

for geometry, but most games don't bother to describe the mass distribution over the volume of

their models or don't even have closed meshes, where a volume could be calculated automatically.

Therefore most engines just use a generic inertia tensor generated over the bounding box of an

object. A bounding box with the width , the height , depth and the uniformly distributed mass

 has the following inertia tensor .

Similar matrixes can be found for spheres or other primitives and there is a vast collection of

prefabricated inertia tensors on the web. If a non-uniformly distributed mass over the volume of the

rigid body should be necessary - for example for physics puzzles - mass information can be stored in

the models to calculate an inertia tensor during the load phase or in the editor. As Telesto is

designed for games using a space setting, the generic bounding-box inertia tensor was sufficient.

88

Obviously, the goal of the whole dynamics simulation is to receive a world-space orientation. This

was no problem at all for the linear dynamics, as mass is the same in object space and world space.

The inertia tensor, however, changes as we move between object and world space. A physics engine

therefore stores the inertia tensor in object space (), to avoid calculating it in every cycle. A

simple bounding box inertia tensor might not be that much of a problem, but a good physics engine

architecture should not deny the possibility of using more complex inertia tensors which cannot be

calculated efficiently at runtime. The world space inertia tensor () is then achieved by

performing a similarity transformation with the orientation . As a rotation matrix like the

orientation is orthogonal, its inverse is its transpose.

Now the only thing remaining is to connect the inertia tensor and the angular momentum to receive

an orientation matrix. To do so, the change of orientation over time is required: better known as the

angular velocity. Thus it will finally be necessary to do the jump from angular momentum to angular

velocity. Taking a look at the linear velocity and linear momentum, both are linked via mass. Dividing

the linear momentum through the mass of the object yields the linear velocity. That's exactly what

the angular quantities have to be handled as, too, just with the difference that the angular

momentum has to be transformed by the inverse inertia tensor. To avoid calculating the inverse

inertia tensor in every cycle, it is common use to actually store the inverse inertia tensor in object

space (
) in every Physics Object. As we are talking about rigid bodies, the inverse inertia

tensor in object space will be constant. The angular velocity (- don't ask me why it has this

symbol) may then be received as follows.

Obviously, the angular velocity is a vector, while the orientation is a matrix. We can't just stick them

together like we did with the velocity and the current position. Allow me to take a closer look at the

angular velocity. The angular velocity is actually a pseudovector, with its direction defining the axis

of rotation and its length defining the speed of rotation. A vector is rotated by calculating the cross

product between the angular velocity and the given vector. Applying angular velocity to the

orientation matrix would require a cross product between a vector and a matrix, something usually

undefined. To solve this issue, we will just represent the cross product in its less common matrix

notation.

Applying the "cross product matrix" of a vector on a matrix results in a matrix where the columns

represent the cross products of the vector and the columns of the initial matrix. That's exactly what

is required to numerically integrate the orientation to the next Brush Cycle, as the columns of an

orientation matrix can be seen as the unit vectors of the target coordinate system. Consider rotating

an object around its X-axis. This would require you to both rotate the y and z axis around the x axis.

That's what the "cross product matrix" will do, but it is just a more mathematical description. Just to

spare myself some writing, I have made up the box notation for the "cross product matrix" of a

89

vector. Thus that's finally the last element required to set up the angular processing formulae for a

Brush Cycle.

Input:
The Torques

The torques are received from the forces and the same rules apply in
respect to local and global forces. Besides that, the calculation is trivial. is
the point of application of a given force. As with forces, the torque is only
valid for the moment (the Brush Cycle) it was calculated for.

Prediction:
Angular Velocity

The first thing required to get the angular velocity is the angular
momentum, which is numerically calculated from the summed torque.

To receive the angular velocity, the inverse inertia tensor, which is stored in
object space in the Physics Object, has to be transformed into world space.
This is just an intermediate result and obviously dependant on time, as the
orientation used is the orientation matrix of the last Brush Cycle.

With the current inverse inertia tensor in world space at hand, it is possible
to receive the angular velocity from the angular momentum.

The angular velocity is, just like the linear velocity, the variable to be stored
for prediction cycles. Just as with linear velocity, a friction formula might be
applied it.

Output:
Orientation

Finally, we will have to apply the angular velocity to the orientation to
receive the orientation of the current Brush Cycle. As described above, we
will use the magical "cross product matrix", represented by the boxed
angular velocity.

With the orientation, we gathered everything required for the dynamics simulation. We should now

have covered the math directly involved in the implementation, but there is a lot of beautiful physics

around it, which is required if you want to do more complex stuff, such as a fluid simulation or soft

body simulation. It is definitely worth learning more about that if your plan is to implement a physics

engine, but recreating Newton's work would be way out of the scope of this document. I would

rather like to take a closer look at some implementation details.

While the formulae to get the orientation work out on paper, they will slowly degenerate during a

running simulation. That's because we modify an existing matrix in every Brush Cycle, and due to

90

float inaccuracy, errors will creep in. This will start stretching your starships even after just a few

seconds of movement, as the orientation matrix (or better said the rendering of an object using a

transformation matrix based on the orientation matrix) is very intolerant to even the smallest

fluctuation. To make sure the matrix stays valid during the whole simulation, we will have to re-

orthogonalize it in every Brush Cycle. There are numerous ways to do that. For the current Telesto

build, I chose a very geometrical solution.

Re-orthogonalization of an orientation matrix

Input An orientation matrix, represented by its unit vectors:
float3 X, Y, Z

Output An orientation matrix, represented by its unit vectors:
float3 X', Y', Z'

Algorithm X' = normalize(X)

Z' = normalize(X Y)

Y' = normalize(Z' X)

Another note about the implementation is that Telesto does not store the Physics Object state

(linear velocity, position, angular velocity, orientation) in the Physics Object directly, but in a

separate state structure. There are, in fact, two state structures stored per Physics Object,

representing the current and the last Brush Cycle state. This is necessary as collision analysis, as we

will soon see, requires jumping back in time and subdividing the time in smaller steps as the Brush

Cycle would do.

10.2.2. Collision Geometry

With the dynamics done, we may now accelerate a spaceship and push it around via forces, but it

will still interpenetrate asteroid belts at will. In our real universe, the solidity of an object is an

inherent property caused by sub-molecular forces. The in-game universe neither knows about atoms

nor binding energy, so it is necessary to define different rules to mimic the solidity of real world

bodies. This is the second important feature of a rigid body physics simulation.

It is best to begin with the very basics: the collision geometry. The requirements of the physics

engine towards their geometry are completely different as the renderer requirements. The physics

engine, for example, has to deal with many triangles, which could mean to - in a suboptimal

approach - iterate over all triangles on the CPU, while the triangle count of geometry is almost

irrelevant for modern graphics cards. The shader complexity is instead much more significant. It is

therefore reasonable to not use the render geometry for physics simulations. Instead, a simplified

geometry is created, following other constraints. A collision geometry must be fast to answer

collision queries, which are queries whether or not two bodies penetrate each other, and if so,

where. This is important to note: a collision algorithm usually does not check for collision, but for

interpenetration. This is done to avoid separate handling for the many special collision cases, like

edge-edge or even point-point collisions. It is also done to achieve a certain flexibility in processing,

as a real collision situation would require finding the precise point of time between two Brush Cycles

where both bodies touched, but did not penetrate each other. The collision response algorithm

91

usually expects a point of penetration and a normal for the collision surface, pointing towards the

first query object by convention.

Two penetrating objects do of course produce an interpenetration volume, and not a point. Yet, all

physics engines reduce a penetration situation to a single point and a normal for performance

reasons. That adds a certain bias to the result, but physics geometry is just an approximation of the

actual body either way, and the penetration situation is just an approximation for the collision

situation. Adding another approximation, like replacing the penetration volume with a point, won't

hurt too much. At the end of the day, a physics simulation for a game engine is a very simplified

version of real physics, tuned for performance. This can be observed in many physics engines, like

Havoc (41) as used in Half-Life 2 (6). If an object such as a crate falls on the floor, the collision might

produce a response, as if one of the corner points hit the floor first. This happens, because many

collision algorithms - especially for convex polyhedrons - reduce the collision volume to a corner

point. But even in the real universe, there is an atmosphere between the crate bottom and the floor

preventing perfect face-face collisions - not to mention that there aren't even precise faces on an

object built of atoms.

The probably most common type of geometry used for physics queries are convex polyhedrons.

They are often the technique of choice because there are efficient algorithms to achieve a collision

point. The most popular algorithm is the Gilbert-Johnson-Keerthi distance algorithm (68), better

known under its abbreviation GJK. I will not describe the complete algorithm in this document, but

just shortly summarize the basic idea behind it. It builds up on the Minkowski addition of two bodies,

A and B, which produces a Minkowski body M. The Minkowsi body M can be thought of as the body

which is described by all points resulting from a pairwise subtraction of all points of the bodies A and

B. If A and B were penetrating, there were some shared points which were both contained in A and

B. Therefore, the Minkowski body contains the origin, as some of the point pairs contained two

identical points, resulting in the null vector. The GJK algorithm now tries to find a polyhedron within

the Minkowski body, which contains the origin. If one can be found, the bodies A and B are

intersecting and vice versa. Telesto does not use the GJK algorithm for convex polyhedrons, but it is

still a quite efficient implementation. There is a great video at Molly Rocket (69) explaining a brief

implementation-oriented version of the GJK.


for further reading...

Implementing GJK
http://mollyrocket.com/849

Telesto utilizes triangle geometry for the physics geometry. A triangle mesh is of course not

necessarily a convex polyhedron. In fact, Telesto supports "slightly concave" bodies. This means that

the algorithm itself supports concave geometry, but the result gets worse the more extreme a

concave body is. A "C" shape is a good example for a very concave body, while a dent in a surface is a

good example for a "slightly concave" element. Convex polyhedron algorithms have to divide a

concave body into a group of convex polyhedrons. This can usually be done during load time. For

Telesto, however, I wanted to save myself the option to do damage visualization by deforming

geometry. This could lead to dynamic subdivision of concave bodies in convex polyhedrons, which is

92

a very complex and time intensive process for generic geometry. To avoid potential lags during the

physics simulation, a triangle mesh geometry might offer better performance. Yet, for the non-

deformable rigid bodies as they are used at the moment in Telesto, the convex Polyhedrons would

probably be faster. The algorithms used for triangle meshes in Telesto are described in the following

chapters.

10.2.3. Collision Detection

The first collision query to look at is the collision detection. It answers the question as to whether or

not two objects are intersecting. The collision detection is called many times for a single pair of

colliding bodies, as we will see in the collision response chapter - it is used to subdivide time to find a

point of time as close to the moment of collision as possible. Due to this high frequency of calls, the

collision detection requires a fast implementation. For now, let's start on the very basics:

intersecting two triangles. There are countless algorithms to solve this problem as well as optimized

implementations for them (70) (71) (72). Telesto uses a basic approach, as follows. I will not go into

detail for this implementation and the math behind it, as it is a very well known problem.

Triangle-triangle intersection

Input Two triangles

Output An interval (the start and end point of the intersection line segment)

Algorithm 1. Compute the plane quotations defined by the vertices of both triangles or
their normal vectors

2. Compute the intersection line of both planes
3. Compute the line segment of the triangles on the intersection line
4. Project the line segments on the largest axis, compare the intervals and

return output. Return no collision if the intervals do not intersect

A collision detection algorithm may terminate and return true as soon as one positive triangle-

triangle test is found. However, a physics geometry can easily have several hundreds or thousands of

triangles, which would lead to unacceptably slow computation times if every triangle-triangle pair

has to be compared. Even worse, if no collision is found - the case that happens most - all triangle

pairs have to be checked. This problem can only be solved by reducing the number of triangle checks

required. This can be achieved by using hierarchical bounding volumes.

The idea behind hierarchical bounding volumes (also known as bounding volume hierarchies) is to

generate a simple bounding geometry which completely contains the model. A first check is then

performed on the bounding geometry. If the bounding geometries should intersect, their children

are checked for collision. The children could either be triangles, or other bounding volumes.

Consider your keyboard, for example. A very rough bounding volume could be a sphere that

completely contains the keyboard. Spheres are popular bounding volumes - besides axis aligned

bounding boxes and oriented bounding boxes - because their intersection checks are very simple.

Two spheres intersect if the distance between their centers is less than their summed radii. Telesto

uses spheres for hierarchical bounding volumes, too. As you move your finger towards your

keyboard, you will intersect the imaginary bounding sphere around it. The bounding sphere is now

split into its next pair of children - hierarchical bounding volume trees are usually binary trees. This

93

could be a sphere around your main key part and a smaller sphere around the numeric keypad. As

you move your finger closer to the "T" key, the main-keyboard-sphere will be split in its children and

so forth until you arrived at the very "T" key. Now the children are the two triangles forming the top

of the key and an intersection is found. The following figure shows the process in 2D, with circles and

line segments, as the hierarchical bounding spheres are hard to visualize in 3D. The algorithm itself

works in exactly the same manner, but there are more efficient solutions for 2D situations. This

example just serves the purpose of visualization. It demonstrates a line-segment-body and ray

intersection. A body-body intersection would work just the same, but the hierarchical bounding

volumes of both bodies would have to be split. I chose this illustration as it illustrates the tree

traversal quite well.

Figure 17: Bounding Volume Hierarchy sample

There are different algorithms to traverse the hierarchical bounding volume tree. In the example

above, there are several spheres penetrated by the ray, but only the one closest to the ray origin is

split. Other algorithms might just split the first sphere found. In addition, a bounding sphere may

contain bounding spheres which actually reach outside their parent, as long as the actual triangles

(or line segments in this example) are completely included in the parent. That's a feature of building

the hierarchical bounding volume tree. Many algorithms will not follow this precision, but just

enforce that a parent completely includes all its children bounding objects. I will take a look at the

way hierarchical bounding volume trees are constructed soon. For now, I want to take a look at the

algorithm involved in climbing through the tree in Telesto.

94

Telesto uses a hierarchical bounding volume tree composed of spheres with bounding volumes

organized in a binary tree structure. The items of the tree are stored in a separate structure from the

actual triangles, to minimize the data required to be shuffle around. A tree item consists of the

bounding object, its child IDs and a triangle ID if it is a triangle. This means that even single triangles

are represented by an enclosing sphere. This is done during the tree construction algorithm and has

no major significance for the actual traversal algorithm. The tree is constructed during geometry

loading and stored in object space, which means that the spheres have to be transformed for every

intersection query. However, for a sphere, the only thing to do is to transform the center vector.

Telesto traverses the tree iteratively and always splits the tree item first, which is first checked. As

the algorithm uses a stack for the loop, this behavior will cause the algorithm to traverse a chosen

tree path first until there is either no intersection found on the path, or the triangles - the leaves of

the tree - were reached. That's an important property of a hierarchical tree traversal algorithm, as

otherwise it could start to split several bounding volumes of higher tree levels at the same time,

while it would already have reported an intersection in the same amount of iterations used. The

following algorithm is almost identical to the one used in the current Telesto build.

Hierarchical Bounding Volume tree traversal for a ray-mesh intersection check

Input The root item of the hierarchy
treeitem root

The transformation of the respective Physics Object
matrix4x4 t

A ray for the intersection check
ray r

Output Whether or not an intersection could be found

Algorithm stack s

s.push(root)

treeitem i

while not s.IsEmpty {

 i = s.pop()

 if i.IsTriangle then {

 }

 if TriangleRayIntersectionCheck(i, t, r) then {

 return true

 }

 else {

 if BoundingIntersectionCheck(i, t, r) then {

 s.push(i.left)

 s.push(i.right)

 }

 }

}

return false

A small piece of code, but highly significant for the performance of the whole physics simulation.

With this algorithm in mind, the benefits of a hierarchical bounding volume tree are obvious. If two

bodies do not intersect because there is some distance between them, the first bounding volume

intersection check will fail and the processing is done. If they intersect, the bounding spheres cause

95

it to identify the locality where the actual intersection takes place. This allows exclusion of a large

part of the model within the first few iterations without even touching the triangles. Last but not

least, sphere checks are a lot cheaper than triangle checks. For comparison, here are some

benchmark results using different collision detection methods in Telesto in a few test scenes. The

benchmarks were performed on the test system, A, as described in the appendix, with the same

game mechanics and renderer modules running in all tests. Collision analysis and response used the

same algorithm as the collision detection. The speeds show the average cycle rates after 10 minutes

of simulation running in debug mode.

 Few collision scene Medium collision
scene

High collision scene

Triangle-Triangle Check ca. 17 cycles/s ca. 2 cycles/s <1 cycle/s

Bounding Sphere Check ca. 920k cycles/s ca. 340 cycles/s ca. 13 cycles/s

BVH Tree ca. 1.3 Million cycles/s ca. 1.1 Million cycles/s 800k cycles/s

In a low density collision test scene, a plain bounding sphere check before starting to do triangle-

triangle checks helps to prevent doing checks for objects which are far away from each other. As the

density increases, the bounding sphere checks will rapidly slow down, as more and more objects

have to be compared. The only method with a good performance is a bounding volume hierarchy

tree.

The efficiency of the hierarchical bounding volume tree, however, is highly dependent on the way

the tree was built. A tree should be rather broad, in order to exclude as many parts of the model for

collision checks as possible. A chain-like tree with leaves split over all layers of the tree could end

with very unpredictable performance, as a slight change in positions of intersecting objects could

lead to a much longer tree traversal time. As a general rule, a good bounding volume tree should

contain its leaves in the last two or three layers. A suboptimal tree led to performance losses of over

70% in benchmarks.

How to build up the tree in the first place? There are three different methods. A bottom-up

algorithm starts with the triangles and groups them together until only one element, the root, is

remaining. This is probably the fastest algorithm, but might lead to slightly larger bounding spheres.

A top-down algorithm, in contrast, starts with an initial bounding sphere over all triangles and then

tries to split it into two parts. A top-down algorithm produces very tight bounding spheres, but might

lead to longer processing times, as sphere splitting can be a difficult problem to compute. A top-

down algorithm can be made a lot faster if not binary trees, but n-trees are used. Finally, trees can

be constructed via insertion, by starting to construct bounding volumes on a certain section of the

model and then continuing over the whole mesh, inserting new nodes in the tree. This allows one to

best map the tree on complex geometry.

The current Telesto implementation uses a straightforward bottom-up implementation for tree

construction. As a first step, bounding spheres of all triangles are constructed and put into a work

set. A random bounding sphere B1 is now chosen. All remaining bounding spheres are now searched

for the bounding sphere B2 which is closest to B1. Once they are found, they are both removed from

96

the work set, and a parent is constructed containing both spheres and parent is put into a buffer set.

The process continues with a new random bounding sphere, until the work set is empty (or there is

only one element remaining which is then just moved into the buffer set). Once empty, the work set

and the buffer set are swapped and the algorithm starts again, until only one sphere remains, the

root item. This algorithm already does quite well, but optimization was added to handle bounding

spheres containing other spheres.

10.2.4. Collision Analysis

Now we have a fast collision detection algorithm at hand. It is good to know which Physics Objects

intersect, but in order to start a collision response procedure, we will also have to do a collision

analysis to find a collision point and normal. To do so, we will utilize the same algorithms as we did

for the collision detection. We will utilize the same bounding volume hierarchy and the triangle-

triangle algorithm. However, this time, the algorithm will not terminate after finding the first

intersecting triangle, but put them into a buffer to find all intersecting triangles. This will take longer,

as we will have to traverse a larger portion of the tree. Once we find all intersecting triangles, we

have to boil them down to a single point and normal. The collision point can be achieved by

calculating the average of all collision points - the points on the line segment of intersection on each

triangle in the buffer. The normal, however, should not be averaged. Instead, the average normal -

weighted by the length of the intersection line segment - is used for a ray-cast at the averaged

intersection point. The normal of the closest intersecting triangle is then used as the collision

normal. This assures us that there is always a real surface normal passed to the collision response

algorithm. Consider two cubes, penetrating at one edge. Taking a look at one of the two cubes, the

"ring" of line segments will consist of a straight line of two faces of the cube. An averaged normal in

this - admittedly slightly constructed - situation would lead to a more sphere-like collision, rather

than a cube-like one. Something every observer will notice.

As we already described all the algorithms required to do collision detection, we are already done

with the collision analysis and may advance to the next difficult part: the collision response.

10.2.5. Collision Response

The physics engine is now able to move objects according to their forces and torques and identify an

intersection at a Brush Cycle. Still, nothing stops the objects from continuing to intersect. That's the

part where the collision comes into play.

The collision response is triggered once the collision detection finds a pair of intersecting objects. In

most cases, the actual collision would have happened somewhere between the current and the last

Brush Cycle, and the dynamics simulation already moved the two objects so that they intersect. For

a sufficient result, the collision response will have to find the instance of collision - or a point of time

close to it. To do so, an iterative algorithm is pushed, subdividing the time between the current and

last cycle to find a point of time close to the collision time, but still intersecting. To do so, the Physics

Object states of the last cycle are required. The movement of both collision candidates is then

interpolated and the time elapsed between both cycles is divided, similar to the bisection method.

New collision detection queries are utilized until a predefined accuracy is achieved. The following

figure illustrates the process for a preset maximum iteration depth of 3. The current Telesto build

uses a depth of 5.

97

Figure 18: Time subdivision

Once the "almost collision" situation is received, the collision analysis is started with the

transformations of the received "almost collision" situation. The resulting collision point and collision

normal are then used for the actual collision response. The collision response now has to change the

movement of the colliding objects, to prevent them from intersecting any further. Intuitively, one

might suggest applying a new "collision force" at the colliding objects. However, a force is not a

solution. A force would allow the objects to interpenetrate even further in the next cycles, as the

influence of a force is applied over time. If you throw your keyboard at the floor, it will not slowly

sink in the floor until it is accelerated back towards you. The collision response requires an

instantaneous change of movement. To do so, a new magnitude is invented, the impulse. The

impulse has no real physical counterpart. Yet that shouldn't shock us. The instantaneous change of

movement in a collision situation is the result of molecular interactions and a lot of other details,

which the physics engine cannot simulate. We will therefore make up the impulse to cover this

important loss of detail. However, first things first. Telesto uses Newtonian Mechanics, so it’s best to

start with Newton's Law of Restitution. It relates the relative velocities between two bodies A and B

before and after the collision. Magnitudes after collision are marked by a tilde in the following

formulae. The normal is denoted as in the following formulae and points, as noted in the collision

detection and collision analysis algorithms, at A by convention.

This formula introduces some new variables. The coefficient of restitution () represents material

properties of the bodies. A full elastic collision () represents a rubber ball. For a space scene of

metal starships, lower coefficients might produce a more believable result. The next construct

introduced are the relative velocities between the bodies. At the instance of collision, both bodies

share one point - or in the case of a game physics engine, we get one collision point from the

collision analysis algorithm. The collision point is denoted as . Even though both objects share the

collision point, the velocities of the collision point for both objects can be quite different. Consider

your finger hitting a keyboard key. The keyboard (object A) is stationary, so the key's velocity is zero.

Your finger (object B), however, accelerates towards the key. At the moment of collision, the velocity

of on the key () will still be zero, while the velocity of at your finger () is definitely

higher. The relative velocity between your finger and the keyboard is given as follows.

98

Substituting in the Law of Restitution results in the following formula, which will be our major

workhorse for the following chapter.

We know the collision normal and the coefficient of restitution, which is often hardcoded in the

physics engine or received from material properties of both colliding objects. Yet, the things we still

miss are the velocities at the collision point. The velocity of a point on a body is of course dependant

on the body’s linear velocity. If a body moves with a certain speed without rotation, all its points

have to move with the exact same speed. Rotation, however, might change the individual velocities.

Consider a ventilator. While the object itself has a linear velocity of zero, its angular velocity still

causes movement on the points of the object. This is expressed by the following formula for body A,

body B works just the same. The vector is the vector from the origin to the center of mass of the

respective body - in other words its translation - and the vector is the location of the collision point

in world space. The formula may be used for both pre and post-collision velocities.

The pre-collision angular and linear velocity are known. Yet we have to find the post-collision

versions of them. We already introduced the impulse. The impulse is a change in momentum and, as

we ignore friction during the collision, it is completely directed in the direction of the collision

normal (or in the opposite direction for object B). In this way, the linear velocities after collision can

be written as follows, where is a scalar defining the length of the impulse. Inertia tensors are

considered in world space for the purpose of the collision response.

These formulae may now be substituted into the formulae above, to form the point velocities of the

collision point on both bodies before and after collision. These formulae are finally substituted into

the Law of Restitution which may then be resolved for the length of the impulse . This leads to an

evening-filling formula to solve. Don't forget that the inertia tensor is a matrix, so pay attention to

the order of multiplications. I will skip this part and present the result right away. The impulse length

 may now be calculated and then be plugged into the four formulae above to build the collision

response.

99

Most developers will just copy and paste the formula. Yet it is important to understand the details

behind it to improve the physics model in the future, like adding friction to the collision with a

tangential impulse or working with deformation of models. Telesto does a few calculations more

than actually required and uses less optimization as possible to calculate the impulse, in order to

keep the math and physics behind it accessible. The next builds will probably include a first

framework for basic model deformation and perhaps friction for collision, although the latter is a

difficult topic on its own. Both are not within the scope of this paper and would probably be worthy

of their own thesis.

With the collision response done, we now have a simple but efficient physics engine, including

dynamics, physics geometry and the collision handling algorithms. Yet, due to the fact that we made

some assumptions and reduced the collision analysis to a collision point, we might still get

interpenetration. That's true for most commercial-scope physics engines, too. To still generate a

believable output, most physics engines use geometry which is actually larger than the render

geometry, to add a "safety margin". Utilizing this feature, the Telesto engine already produces a fast

and believable rigid body simulation for space-based scenarios.

The physics simulation presented so far works well on paper and for many in-game scenarios, but

there is still an important situation where it might fail terribly: fast objects. Although the whole

process is called "Collision Response", we never dealt with actual collisions, but mere intersections,

received from intersection checks. These intersection checks during the Collision Detection and

Collision Analysis are not continuously computed. Instead, the Physics Objects are moved every

physics cycle and then checked for intersection. You could visualize that as objects teleporting for

small distances instead of actually moving. If an object teleports far enough (moves fast enough)

that it completely jumps through another object, the physics engine has no chance to recognize the

actual collision, which would have taken place in the real universe. The process to still catch these

collisions is called Continuous Collision Detection.

Continuous Collision Detection is often introduced by generating speed boxes. When doing so,

Collision Detection does not check the actual mesh geometry, but a generated geometry

representing the movement of an object - or at least the object bounding box, which is sufficient for

Collision Detection, but will result in a larger amount of Collision Analysis jobs. The following figure

illustrates the process with a speed box generated from bounding spheres in 2D for better visibility,

but 3D works in just the same way (the 3D result would have been a capsule).

100

Figure 19: SpeedBox on Star Trek ships from Fleet Operations

Speed Boxes work well, and if a generic bounding volume is used, like a sphere, the generation and

checks of a speed capsule are fast. A capsule is defined by two points and a radius, for example,

which can be taken directly from the transformations of both states. However, the additional

Collision Analysis tasks required when intersection speed boxes without an actual collision are

generated will cost a lot more performance. Physics Objects will therefore attempt to use

teleporting objects as much as possible. The vast majority of entities will do well with simple

teleporting. Telesto performs a Brush Cycle at certain intervals, 10ms for example, which would lead

to having an object move more than 100 times its length per second in order to actually miss a

critical collision, such as passing through another object. That's quite unlikely for starships, if the

speed of light is still the upper limit in the in-game universe. This is, however, very likely for bullets

or laser pulses. Luckily, these objects are usually very small, and this additional knowledge may be

exploited to do a very fast continuous collision detection algorithm. In other words, representing

them as points and using raycasts. Telesto allows representing geometry as a point, which will lead

to ray cast checks instead of the Collision Detection and Collision Analysis as described above. As

points have no volume, points can't collide with other points. That's important for certain gameplay

scenarios. Consider, for instance, an anti-missile system which destroys incoming projectiles by

shooting them. More complex, larger objects will still require using speed boxes, like combat

fighters, interceptable missiles, or comets.

101

10.3. GUI
The final sector of the Foundation I want to talk about is the user interface. As already mentioned in

the input handling earlier in the Core, the user interface is split into two separate instances, the GUI

itself, handling the placement of on-screen interface elements, and the GUI Logic, performing the

actual processing behind the functions. The GUI Logic is nothing spectacular. It's just a Game Object

with an LScript environment featuring event handlers for the different functions available to the GUI,

like camera movement, activating an ability, or issuing a certain order. The GUI Logic is registered at

the InputBrush, and Telesto offers support to register multiple GUI Logic objects to switch between

different interface stages. This makes it easier to produce different controls, for example for the

main menu to set up a game and for the in-game situation.

The GUI module is a bit more interesting. Similar to the Game Objects and Physics Objects, it

contains GUI Objects. The GUI Objects handle their display on the screen and may link to a Game

Object, which will then receive their InputEvents, like getting click, and may produce a GUIEvent, like

firing a laser, in the input handler of the linked Game Object. A very simple button Game Object to

handle the firing of a weapon on a GUI button click is given below. The EventHandler function

expects a Game Object to bind the event handler to, the ID of the event-type the handler will listen

too (remember that strings are actually mapped on IDs, so "guiclick" is actually a valid number)

and finally the atom to body.

1 @guibutton

2 !EventHandler(~this, "guiclick", [

3 !GUIFire("fireblaster")

4])

The GUI objects build up all visible parts of the on-screen interface. They are arranged in a

hierarchical system, starting at the GUIRoot, the only fixed and parentless GUI object, which covers

the complete screen. All coordinates are expressed as offset between an anchor on the current

object and a reference anchor on its parent. All GUI Objects are rectangles for the purpose of their

management. Their graphical representation may of course be anything desired and the event

handler, like the sample above, may filter received click events to mimic a non-rectangle button like

a circle.

Figure 20: GUI Object Placement

102

The above figure shows an example of a "RightCenter" anchor and a "RightCenter" reference anchor.

This is an efficient model to arrange GUI elements, as it works well with resizing an element. If the

parent in the above figure were scaled to the right, the item will move along with it. To do so, a

point-cast (strange name, I know) is performed on the hierarchy to return the relevant GUI objects

for interaction. That's a rather fast process. The renderer will have to iterate over the GUI objects

either way to refresh its transformations, so the offset-notation of GUI elements is no processing

overhead for the externals, too.

Graphics-wise, the GUI objects support blending states. A GUI object may contain several states,

which consist of offsets and a scale of the texture mapping. It is then possible to select two states

and a blending factor via the GUI API, which allows soft transition between different GUI element

states, like a soft on-hover and on-leave effect. As the blending is done in the graphics shader (well a

renderer could of course treat it differently, but the recommendation is to blend the textures in the

shader), all states have to be stored in the same texture, like in the following example, containing

material for a Telesto Demo application I once made for Fleet Operations (18).

Figure 21: GUI Object Blend States

Similar blending could of course have been done by using multiple interface objects and animating

their alpha color. However, as soft blending is a popular feature which is applied to almost all GUI

elements in a modern game interface, I decided to do a direct implementation for it.

Another special element of the GUI is the Cursor. In the first implementations, I handled the cursor

just via the GUI and GUI Logic modules, just like any other GUI object. However, that led to a slightly

perceptible stuttering in cursor movement, as the distance between Safe Cycles - where the Input

and therefore the mouse movement is being processed - is quite long in Telesto. To solve this issue, I

created a separate cursor instance, which handles the coordinates of the cursor object. This cursor

object is then directly fed from the LocalInput and the Renderer directly takes the coordinates from

the cursor object for pure display reasons. The functionality of the cursor, like pressing a button or

firing on-hover events are still only executed during the Safe Cycles, but the cursor now moves

fluidly. Similar approaches are often titled "asynchronous cursor" in some game engines.

At the moment, the GUI has to be put together by hand; writing the script and definition files and

placing objects via lambdas. The tooling for Telesto will of course also include an interface designer

to offer simple drag-and-drop placement. At the end of the day, the handling of a GUI in functional

languages is very intuitive, as you can just pass lambdas around to change the functionality of

buttons. That's especially useful for elements that change often, like an action bar holding the

abilities of a character in an MMOG.

103

11. Externals
External modules might include a renderer, debug analyzer, an agent gathering data for a web

database or building the AI world. The most important concept for external modules is the extractor

pattern, which I already described earlier. The remaining modules are not yet implemented in the

current Telesto build or are placeholder implementations. The current renderer, for example, is just

a straightforward DirectX11 rasterizer, supporting the complete Telesto API, but offering not much

eye candy. I already have started working on a deferred DirectX11 renderer, which will appear in one

of the next Telesto builds. A few new descriptions will probably be added too, for example in order

to control post processing effects like bloom effects via LScript lambdas. The description and

exchange-format workflow really ended up to be of great benefit for extending functionality later

on.

I will not venture into the details of implementing a renderer, as that's clearly not the scope of this

document and there is a ton of resource on this matter. With the externals left out for now, we are

done with our first pass over the Telesto architecture.

104

105

12. Thread Map
A very important feature of a commercial-scale game engine is good performance. This is, naturally,

closely linked with the hardware. With the current budget per CPU, the maximum calculation rate

per second is stressing its physical limits. That's why multi-core architectures are becoming so

popular in the past few years. A game engine will have to pay tribute to this development by

supporting - and benefiting - from multi-thread architectures.

A very powerful solution to implement multithreading is a job system utilizing a Thread Pool. A

Thread Pool is just a generic queue with several worker threads to process the incoming jobs. This

offers good opportunities to adapt the Thread Pool to the current CPU, as the amount of worker

threads may be increased or decreased without touching the actual implementations of specific

features. The drawback is the completely asynchronous nature of a job system, which might be more

difficult to manage and develop. The following figure shows a thread map of Telesto.

Figure 22: Thread Map

Telesto requires at least three threads, which produces sufficient performance on dual core systems.

In this case, the Thread Pool is stagnating to a sequential processing of jobs in the main thread. Less

than two hardware threads results in a significant performance loss, as a benchmark will soon show.

Additional extractors, such as the AI, might utilize the Thread Pool. That's recommended for

synchronous extractors, as the Thread Pool is rather unused in the synchronized window where no

game mechanics or physics simulations are running. Asynchronous Extractors require their own

thread, as that's the nature of an asynchronous module. Their resource loading could however be

dispatched to the Thread Pool too.

Most Core functionality is located in the Main Thread. The basic universe runtime is established, the

File System is generated, LScript compiler and string-to-ID mapping is performed and the important

synchronous modules like the Relay and the brushes are running in this thread, too. Some modules

106

are not presented in the thread map, like the specific object containers, which deploy the jobs for

the game mechanics and physics simulations onto the Thread Pool.

Working with multiple threads, especially a Thread Pool, requires having shared resources. This

would be the case with the Game Objects for example. If shared resources are required, the engine

will have to take care of locking. Conventional locking might result in unpredictable performance

problems, due to threads falling asleep or - in the worst case - another process rising. A good pattern

to work with locking is to minimize the time required to gather information from a shared resource.

An implementation of this pattern is the indexing of variables in LScript like what was described

earlier, where the lambda is able to ask for all required variables at once. If the access time on a

shared resource is relatively short, a spinlock offers much better performance for short-term locks. It

behaves like an "are we there yet? are we there yet?" conversation in contrast to the "not yet there?

will ask again in 5 minutes" conventional lock. Telesto in fact uses just a single conventional lock,

which is used in the initial setup phase. The following diagram shows some performance

benchmarks made on different systems offering a different hardware thread count. The system

details are available in the appendix.

 System A System B System C System D

Idle Scenario

ca. 1.8 Million
Cycles/s

ca. 1.0 Million
Cycles/s

ca. 960k
Cycles/s

ca. 220
Cycles/s

High Game
Mechanics Scenario

ca. 1.3 Million
Cycles/s

ca. 580k
Cycles/s

ca. 620k
Cycles/s

ca. 100
Cycles/s

High Physics
Scenario

ca. 1.4 Million
Cycles/s

ca. 620k
Cycles/s

ca. 700k
Cycles/s

ca. 90
Cycles/s

High Game
Mechanics and
Physics Scenario

ca. 1.1 Million
Cycles/s

ca. 610k
Cycles/s

ca. 580k
Cycles/s

ca. 30
Cycles/s

107

108

109

13. Acknowledgments
I want to thank everybody who supported me in creating this thesis, especially my parents, Heide-

Rose and Georg Stiegler, for their ongoing support and patience.

A special thank-you goes to Avery Russell for proof-reading my work and his support with the English

language.

I would like to further thank my professors Walter Kriha and Jens-Uwe Hahn for their support and

the great creative freedom they offered me for the creation of Telesto and this thesis.

Last but not least, I want to thank Bradford A. Smith, Harold Reitsema, Stephen M. Larson und John

W. Fountain who discovered the Saturn moon Telesto on April 8th, 1980.

110

111

14. Integrity Statement
Herein I declare that this Master Thesis was created entirely by myself. I only used the sources and

tools specifically stated in this document. Thoughts used, either by meaning or quoted, were marked

as such.

Hiermit erkläre ich, dass ich die vorliegende Master Thesis selbständig angefertigt habe. Es wurden

nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder

sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht.

Stuttgart, November 16th, 2010 _________________________________
 Andreas Stiegler

112

113

15. Appendix: Benchmark Systems

System A

Intel Core2 Quad (Q9550) @ 3 GHz

8 GB Ram

ATI Radeon HD 5870, 1 GB Video Ram, Driver version 10.9

Windows 7 x64

System B

Intel Core2 Duo (P8400) @ 2.26 GHz

4 GB Ram

Nvidia GeForce 9600M GT, 512 MB Video Ram, Driver version 258.96

Windows 7 x64

System C

Intel Core2 Duo (T6400) @ 2GHz

4 GB Ram

Nvidia GeForce 9600 GT, 1 GB Video Ram, Driver version 179.24

Windows 7 x32

System D

Intel Pentium 4 @ 3 GHz

1 GB Ram

Nvidia GeForce FX 5600, 256 MB Video Ram, Driver version 96.85

Windows Vista x32

114

16. List of Figures
Figure 1: Game Overview .. 21

Figure 2: Game Engine Overview .. 23

Figure 3: Constant Cycle Length.. 30

Figure 4: Variable Cycle Length ... 31

Figure 5: Causal conflicts during a cycle ... 33

Figure 6: Active Object with a private simulation ... 40

Figure 7: Active Object dependency problem .. 41

Figure 8: Modular Shared Memory Model ... 42

Figure 9: Behaviors.. 44

Figure 10: Early StarCraft alpha version, Blizzard Entertainment ... 50

Figure 11: Telesto Core Overview (Functionality)... 57

Figure 12: Telesto cycle layout .. 58

Figure 13: Texture loading .. 71

Figure 14: Input Handling.. 75

Figure 15: Telesto Foundation Overview (Functionality).. 77

Figure 16: Prediction ... 84

Figure 17: Bounding Volume Hierarchy sample ... 93

Figure 18: Time subdivision .. 97

Figure 19: SpeedBox on Star Trek ships from Fleet Operations ... 100

Figure 20: GUI Object Placement .. 101

Figure 21: GUI Object Blend States ... 102

Figure 22: Thread Map .. 105

115

17. References
1. Szalai, Georg. Video game industry growth still strong: study. Reuters. [Online]

http://www.reuters.com/article/idUSN2132172920070621.

2. Blizzard Entertainment. World of Warcraft. 2004.

3. Pettey, Christy. Gartner Says "Generation Virtual" Will Have a Profound Influence on Culture,

Society and Business. Gartner. [Online] http://www.gartner.com/it/page.jsp?id=545108.

4. MicroProse. Sid Meier’s Civilization. 1991.

5. Blizzard Entertainment. StarCraft. 1998.

6. Valve Corporation. Half-Life 2. 2004.

7. Crytek. Crysis. 2007.

8. Valve Corporation. Counter-Strike: Source. 2004.

9. Tripwire Interactive. Killing Floor. 2009.

10. Obsidian Entertainment. Neverwinter Nights 2. 2006.

11. Bugbear Entertainment. FlatOut 2. 2006.

12. NCsoft. Aion. 2008.

13. ArenaNet and NCsoft. Guild Wars. 2005.

14. Studio II Software GmbH and Ascaron. Sacred 2: Fallen Angel. 2008.

15. Nvidia. PhysX.

16. Nintendo. New Super Mario Bros. Wii. 2009.

17. 1C:Maddox Games. IL-2 Sturmovik. 2001.

18. Star Trek Armada II: Fleet Operations. [Online] http://www.fleetops.net/.

19. Activision. Star Trek: Armada II. 2001.

20. Blizzard Entertainment. StarCraft II: Wings of Liberty. 2010.

21. Gas Powered Games. Supreme Commander. 2007.

22. Relic Entertainment. Homeworld. 1999.

23. —. Homeworld 2. 2003.

24. Ironclad Games. Sins of a Solar Empire. 2008.

25. Related Designs and Blue Byte. Anno 1404. 2009.

116

26. Friedmann, Thomas, Häuser, Thomas and Kneisel, Thorsten. Die Siedler II – Die nächste

Generation. 2006.

27. Hidden Path. Defense Grid: The Awakening. 2008.

28. Pandemic Studios. Battlezone II. 1999.

29. DICE Schweden. Battlefield 2. 2005.

30. Pandemic Studios. Battlezone. 1998.

31. Namco. Pac-Man. 1980.

32. Paschitnow, Alexei. Tetris. 1984.

33. Nishikado, Toshihiro. Space Invaders. 1978.

34. MicroProse. Sid Meier’s Civilization II. 1996.

35. id Software. Doom. 1993.

36. —. Quake. 1996.

37. Valve Software. Half-Life. 1998.

38. Epic Games. Unreal. 1998.

39. Blizzard Entertainment. Warcraft III: Reign of Chaos. 2002.

40. id Software. id Tech 6 Engine.

41. Havok. Havok Physics.

42. Open Dynamics Engine. [Online] http://ode.org/.

43. 3Dconnexion. Space Navigator.

44. 3Dconnexion. [Online] http://www.3dconnexion.com/.

45. Nintendo. Wii. 2006.

46. FMOD. [Online] http://www.fmod.org/.

47. Lambda the Ultimate. [Online] http://lambda-the-ultimate.org/.

48. Paramount Pictures. Star Trek.

49. Blizzard Entertainment. Warcraft: Orcs & Humans. 1994.

50. The Programming Language LUA. [Online] http://www.lua.org/.

51. SlimDX. [Online] http://slimdx.org/.

52. DirectX Developer Center. [Online] http://msdn.microsoft.com/en-us/directx/default.aspx.

117

53. XNA Developer Center. [Online] http://msdn.microsoft.com/de-de/xna/default%28en-

us%29.aspx.

54. Microsoft .NET Framework. [Online] http://www.microsoft.com/net/.

55. Xbox.com. [Online] http://www.xbox.com/en-GB/.

56. id Software. Doom 3. 2007.

57. Notepad++. [Online] http://notepad-plus-plus.org/.

58. Autodesk 3ds Max. [Online]

http://usa.autodesk.com/adsk/servlet/pc/index?id=13567410&siteID=123112.

59. Improving .NET Application Performance and Scalability. s.l. : Microsoft.

60. smalltalk dot org. [Online] http://www.smalltalk.org.

61. Haskell. [Online] http://haskell.org/.

62. OpenGL - The Industry's Foundation for High Performance Graphics. [Online]

http://www.opengl.org/.

63. World of Warcraft Forums - How many KB's an Hour does WoW use? [Online]

http://forums.worldofwarcraft.com/thread.html?topicId=17616152297&sid=1.

64. Blizzard North. Diablo II. 2000.

65. Valve Software. Counter-Strike. 2000.

66. Server Support Forum - Traffic eines Counter Strike Servers. [Online]

http://serversupportforum.de/forum/faqs-anleitungen/8273-faq-traffic-eines-counter-strike-

servers.html.

67. Hecker, Chris. Rigid Body Dynamics. chrishecker.com. [Online]

http://chrishecker.com/Rigid_Body_Dynamics.

68. Gilbert, E.G., Johnson, D.W. and Keerthi, S.S. A fast procedure for computing the distance

between complex objects in three-dimensional space. 1988.

69. Molly Rocket - Implementing GJK. [Online] http://mollyrocket.com/849.

70. Möller, Tomas. A Fast Triangle-Triangle Intersection Test.

71. Intersection of Triangles in 3D Space. [Online] http://www.applet-magic.com/trintersection.htm.

72. Tropp, Oren, Tal, Ayellet and Shimshoni, Ilan. A fast triangle to triangle intersection test for

collision detection. 2005.

73. Varszegi, Jeff. How to Write High-Performance C# Code. dotnet.sys-con.com. [Online]

http://dotnet.sys-con.com/node/46342.

118

74. Gregory, Jason. Game Engine Architecture.

75. Martin, Robert C. Clean Code - A Handbook of Agile Software Craftsmanship.

