
PRAGMATIC
(GAME) DEVELOPMENT

MARVIN POHL



LAB132

⚫ Founded in April 2017 from 4 HdM Students

⚫ 11 Team Members

⚫ Development of video games (our own as well as on behalf of clients)

⚫ 3 own titles

⚫ Contribution to 20+ other game titles through technical support (e.g. with Unreal 

Engine), ports for up to 5 platforms, full on co-development of titles for multiple 

platforms



GAMES

And more...



BACKGROUND

Best practices from 10+ years of active C++ development
and 8+ years of Unreal Engine, starting from 4.5

Working on different codebases from different teams,
reviewing code from employees.

Implementing features in a timely and stable manner.

Samples are from Unreal Engine, 
but concepts apply to all kinds of development.



PRAGMATIC DEVELOPMENT

Not just getting the job done

Feature separation

Ensuring maintainability



00. MAINTAINABILITY

● 80% of the lifetime cost of a piece of software goes to maintenance.

– Maintenance – aka Refactor, Polishing, Debugging, Reading, …

● Hardly any software is maintained for its whole life by the original author.

● Code conventions improve the readability of software, allowing engineers to 

understand new code quickly and thoroughly.

https://docs.unrealengine.com/5.3/en-US/epic-cplusplus-coding-standard-for-unreal-engine/



01. CODE STYLE MATTERS MORE THAN YOU THINK

● Makes it readable

● Avoids common errors

● Do not leave commented out code



01. CODE STYLE MATTERS MORE THAN YOU THINK



01. CODE STYLE MATTERS MORE THAN YOU THINK



02. COMMENTS SHOULD SUPPLEMENT MISSING 
INFORMATION

● Self explanatory code does not need comments

● Describe unusual behavior, that is not obvious

● Edge cases and expectations to the callee or reader

● Additional information not conveyed by function/variable/class names



02. COMMENTS SHOULD SUPPLEMENT MISSING 
INFORMATION



02. SELF DESCRIBING COMMENT



02. BETTER EXAMPLE



03. YOUR COMPONENT IS TOO COMPLEX

● Components should only implement one feature

● Managing state of components should be elsewhere

– Game Objects / Actors

– Managing Components

– (Sub-)Systems



03. YOUR COMPONENT IS TOO COMPLEX

Crane 
Component

Steering 
Logic

Player 
Logic

AI Logic Animation

Attachment 
Logic

Pathfinding

Sound



03. YOUR COMPONENT IS TOO COMPLEX

Crane

Animation 
BP

Pathfinding

Sound

Hook

Attachment 
Logic

AI Module

AI Crane 
controller

Player 
Controller

Crane 
Component



03. YOUR COMPONENT IS TOO COMPLEX

Crane 
Module

Game 
Module

AI 
Module



04. YOUR FEATURE SHOULD BE A (SUB-)SYSTEM

● Systemic Design is not restricted to the engine

● Separate managing part of features into systems

● Helps avoid state bugs when used by multiple sources





04. YOUR FEATURE SHOULD BE A (SUB-)SYSTEM



04. YOUR FEATURE SHOULD BE A (SUB-)SYSTEM

Module Subsystem

Station Actor

Neighbours Modifier

System Actor

Inputs Outputs

Simulation

Production
Resource 
Pumping

Registers Registers
Runs



06. DON’T THROW AWAY YOUR DEBUG 
VISUALIZATION

● Make it accessible via debug flags

● Keep your debug logs (or write them in the first place)

– (GitHub) Copilot is your friend 👀

● Do not comment out debug code

● Avoid conditional compilation if performance allows it



06. DON’T THROW AWAY YOUR DEBUG 
VISUALIZATION



07. INVEST TIME IN TOOLING

● A feature is more likely to be used if easy and intuitive

● Simple things like Tooltips, Units, Slider Limits, Icons

● Custom Visualization of values

● Custom Workflows

● Custom Editors



07. INVEST TIME IN TOOLING



07. INVEST TIME IN TOOLING



07. INVEST TIME IN TOOLING



08. AUTOMATE YOUR WORKFLOW

● No one likes busywork

● Prevents copy 🍝 or careless errors

● Asset creation

● Validation



08. AUTOMATE YOUR WORKFLOW



09. YOUR DEFAULT VALUE SHOULD NOT BE 0

● Your feature/component should work out of the box

● Do not hardcode values

● Gracefully handle broken user facing values

– An editor crash can mean hours of wasted time because someone forgot to save



09. YOUR DEFAULT VALUE SHOULD NOT BE 0



FC. THE BEST ENGINE FOR YOUR GAME IS …



FC. THE BEST ENGINE FOR YOUR GAME IS …

•… the one that fits your project the best

• Please don’t just use what you already know, just because



“

”

NOTHING IS TRUE, 
EVERYTHING IS PERMITTED.

- Hassan-i Sabbāh, Assassin’s Creed
- Vladimir Bartol, Alamut (1938)

●If there is a good reason for it

●Depends on the context

●Use what’s effective and ensures maintainability

●Question design patterns for their benefits and downsides



FE. WE’RE NOT AS GOOD PROGRAMMERS AS WE 
THINK

● Junior: I’mma build my own features with Blackjack and Hookers

● Engine features are usually thoroughly tested by QA and used in many 

games (Ignore that for Unity)

● Did you really use it correctly?

● Read the source code! (Again not for Unity)



FF. KNOW YOUR LEVEL OF KNOWLEDGE



QUESTIONS?FRAGEN?QUACK🦆THANKS!


	Intro
	Folie 1: Pragmatic (Game) Development
	Folie 2
	Folie 3
	Folie 4: Background
	Folie 5: Pragmatic Development

	Maintainability
	Folie 6: 00. Maintainability

	Code Style
	Folie 7: 01. Code Style Matters MORE THAN YOU THINK
	Folie 8: 01. Code Style Matters MORE THAN YOU THINK
	Folie 9: 01. Code Style Matters MORE THAN YOU THINK

	Comments
	Folie 10: 02. Comments should supplement missing information
	Folie 11: 02. Comments should supplement missing information
	Folie 12: 02. Self describing comment
	Folie 13: 02. Better example

	Complexity
	Folie 14: 03. Your component is too complex
	Folie 15: 03. Your component is too complex
	Folie 16: 03. Your component is too complex
	Folie 17: 03. Your component is too complex

	Subsystem
	Folie 18: 04. Your feature should be a (sub-)system
	Folie 19
	Folie 20: 04. Your feature should be a (sub-)system
	Folie 21: 04. Your feature should be a (sub-)system

	Debug viz
	Folie 23: 06. Don’t throw away your debug visualization
	Folie 24: 06. Don’t throw away your debug visualization

	Tooling
	Folie 25: 07. Invest time in tooling
	Folie 26: 07. Invest time in tooling
	Folie 27: 07. Invest time in tooling
	Folie 28: 07. Invest time in tooling

	Automation
	Folie 29: 08. Automate your workflow
	Folie 30: 08. Automate your workflow

	Defaults
	Folie 31: 09. Your default value should not be 0
	Folie 32: 09. Your default value should not be 0

	Strings
	Folie 37: FC. The best engine for your game is …
	Folie 38: FC. The best engine for your game is …

	Outro
	Folie 39: Nothing is true, everything is permitted.
	Folie 40: FE. We’re not as good programmerS as We think
	Folie 41: FF. Know your level of knowledge
	Folie 42: Questions?


